THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Алгоритм решения простейших тригонометрических неравенств и распознавание способов решения тригонометрических неравенств.

Учителя высшей квалификационной категории:

Ширко Ф.М. п. Прогресс, МОБУ-СОШ №6

Санкина Л.С. г. Армавир, ЧОУ СОШ «Новый путь»

Не существует универсальных приемов преподавания дисциплин естественно-математического цикла. Каждый учитель находит свои, приемлемые только для него способы преподавания.

Наш многолетний опыт преподавания показывает, что учащиеся легче усваивают материал, требующий концентрации внимания и сохранения в памяти большого объема информации, если они научены использовать в своей деятельности алгоритмы на начальной стадии обучения сложной темы. Такой темой на наш взгляд, является тема решение тригонометрических неравенств.

Итак, перед тем, как мы приступим с учащимися к выявлению приемов и способов решения тригонометрических неравенств, отрабатываем и закрепляем алгоритм решения простейших тригонометрических неравенств.

Алгоритм решения простейших тригонометрических неравенств

    Отмечаем на соответствующей оси точки (для sin x – ось ОУ, для cos x – ось ОХ )

    Восстанавливаем перпендикуляр к оси, который пересечет окружность в двух точках.

    Первой на окружности подписываем точку, которая принадлежит промежутку области значений аркфункции по определению.

    Начиная от подписанной точки, заштриховываем дугу окружности, соответствующую заштрихованной части оси.

    Обращаем особое внимание на направление обхода. Если обход совершается по часовой стрелке (т.е. присутствует переход через 0), то вторая точка на окружности будет отрицательной, если против часовой стрелки – положительной.

    Записываем ответ в виде промежутка с учетом периодичности функции.

Рассмотрим работу алгоритма на примерах.

1) sin ≥ 1/2;

Решение:

    Изображаем единичную окружность.;

    Отмечаем на оси ОУ точку ½.

    Восстанавливаем перпендикуляр к оси,

который пересечет окружность в двух точках.

    По определению арксинуса первой отмечаем

точку π/6.

    Заштриховываем ту часть оси, которая соответствует

данному неравенству, выше точки ½.

    Заштриховываем дугу окружности, соответствующую заштрихованной части оси.

    Обход совершается против часовой стрелки, получили точку 5π/6.

    Записываем ответ в виде промежутка с учетом периодичности функции;

Ответ: x ;[π/6 + 2πn , 5π/6 + 2πn ], n  Z.

Простейшее неравенство решается по тому же алгоритму, если в записи ответа нет табличного значения.

Учащиеся, на первых уроках решая неравенства у доски, проговаривают каждый шаг алгоритма вслух.

2) 5 cos x – 1 ≥ 0;

Решение: у

5 cos x – 1 ≥ 0;

cos x ≥ 1/5;

    Изображаем единичную окружность.

    Отмечаем на оси ОХ точку с координатой 1/5.

    Восстанавливаем перпендикуляр к оси, который

пересечет окружность в двух точках.

    Первой на окружности подписываем точку, которая принадлежит промежутку области значений арккосинуса по определению (0;π).

    Заштриховываем ту часть оси, которая соответствует данному неравенству.

    Начиная от подписанной точки arccos 1/5, заштриховываем дугу окружности, соответствующую заштрихованной части оси.

    Обход совершается по часовой стрелке (т.е. присутствует переход через 0), значит, вторая точка на окружности будет отрицательной -arccos 1/5.

    Записываем ответ в виде промежутка с учетом периодичности функции, от меньшего значения к большему.

Ответ: x  [-arccos 1/5 + 2πn , arccos 1/5 + 2πn ], n  Z.

Совершенствованию умения решать тригонометрические неравенства способствуют вопросы: «Каким способом будем решать группу неравенств?»; «Чем одно неравенство отличается от другого?»; «Чем одно неравенство похоже на другое?»; Как изменился бы ответ, если было дано строгое неравенство?»; Как изменился бы ответ, если было вместо знака «» стоял знак «

Задание на анализ списка неравенств с позиций способов их решения позволяет отработать их распознавание.

Учащимся предлагаются неравенства, которые необходимо решить на уроке.


Вопрос: Выделите неравенства, которые требуют применения равносильных преобразований при сведении тригонометрического неравенства к простейшему?

Ответ 1, 3, 5.

Вопрос: Назовите неравенства, в которых требуется рассмотреть сложный аргумент как простой?

Ответ: 1, 2, 3, 5, 6.

Вопрос: Назовите неравенства, где можно применить тригонометрические формулы?

Ответ: 2, 3, 6.

Вопрос: Назовите неравенства, где можно применить метод введения новой переменной?

Ответ: 6.

Задание на анализ списка неравенств с позиций способов их решения позволяет отработать их распознавание. При формировании умений важно выделять этапы его выполнения и формулировать их в общем виде, что и представлено в алгоритме решения простейших тригонометрических неравенств.

решение неравенства в режиме онлайн решение почти любого заданного неравенства онлайн . Математические неравенства онлайн для решения математики. Быстро найти решение неравенства в режиме онлайн . Сайт www.сайт позволяет найти решение почти любого заданного алгебраического , тригонометрического или трансцендентного неравенства онлайн . При изучении практически любого раздела математики на разных этапах приходится решать неравенства онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение неравенства онлайн займет несколько минут. Основное преимущество www.сайт при решении математических неравенства онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические неравенства онлайн , тригонометрические неравенства онлайн , трансцендентные неравенства онлайн , а также неравенства с неизвестными параметрами в режиме онлайн . Неравенства служат мощным математическим аппаратом решения практических задач. C помощью математических неравенств можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины неравенств можно найти, сформулировав задачу на математическом языке в виде неравенств и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое неравенство , тригонометрическое неравенство или неравенства содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения неравенств . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических неравенств онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических неравенств онлайн , тригонометрических неравенств онлайн , а также трансцендентных неравенств онлайн или неравенств с неизвестными параметрами. Для практических задач по нахождению инетравол решений различных математических неравенств ресурса www.. Решая неравенства онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение неравенств на сайте www.сайт. Необходимо правильно записать неравенство и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением неравенства. Проверка ответа займет не более минуты, достаточно решить неравенство онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении неравенств онлайн будь то алгебраическое , тригонометрическое , трансцендентное или неравенство с неизвестными параметрами.

Неравенства, содержащие тригонометрические функции, при решении сводятся к простейшим неравенствам вида cos(t)>a, sint(t)=a и подобным. И уже простейшие неравенства решаются. Рассмотрим на различных примерах способы решения простейших тригонометрических неравенств.

Пример 1 . Решить неравенство sin(t) > = -1/2.

Рисуем единичную окружность. Так как sin(t) по определению - это координата y, отмечаем на оси Оу точку у =-1/2. Проводим через неё прямую, параллельную оси Ох. В местах пересечения прямой с графиком единичной окружности отмечаем точки Pt1 и Pt2. Соединяем двум отрезками начало координат с точками Pt1 и Pt2.

Решением данного неравенства будут все точки единичной окружности расположенные выше данных точек. Другими словами решением будет являться дуга l.. Теперь необходимо указать условия, при которых произвольная точка будет принадлежать дуге l.

Pt1 лежит в правой полуокружности, её ордината равна -1/2, тогда t1=arcsin(-1/2) = - pi/6. Для описания точки Pt1 можно записать следующую формулу:
t2 = pi - arcsin(-1/2) = 7*pi/6. В итоге получаем для t следующее неравенство:

Мы сохраняем знаки неравенств. А так как функция синус функция периодичная, значит решения будут повторяться через каждые 2*pi. Это условие добавляем к полученному неравенству для t и записываем ответ.

Ответ: -pi/6+2*pi*n < = t < = 7*pi/6 + 2*pi*n, при любом целом n.

Пример 2. Решить неравенство cos(t) <1/2.

Нарисуем единичную окружность. Так как согласно определению cos(t) это координата х, отмечаем на грфике на оси Ох точку x = 1/2.
Проводим через эту точку прямую, параллельную оси Оу. В местах пересечения прямой с графиком единичной окружности отмечаем точки Pt1 и Pt2. Соединяем двум отрезками начало координат с точками Pt1 и Pt2.

Решениями будут все точки единичной окружности, которые принадлежать дуге l.. Найдем точки t1 и t2.

t1 = arccos(1/2) = pi/3.

t2 = 2*pi - arccos(1/2) = 2*pi-pi/3 = 5*pi/6.

Получили неравенство для t: pi/3

Так как косинус - это функция периодичная, то решения будут повторяться через каждые 2*pi. Это условие добавляем к полученному неравенству для t и записываем ответ.

Ответ: pi/3+2*pi*n

Пример 3. Решить неравенство tg(t) < = 1.

Период тангенса равняется pi. Найдем решения, которые принадлежат промежутку (-pi/2;pi/2) правая полуокружность. Далее воспользовавшись периодичностью тангенса, запишем все решения данного неравенства. Нарисуем единичную окружность и отметим на ней линию тангенсов.

Если t будет являться решение неравенства, то ордината точки Т = tg(t) должна быть меньше или равна 1. Множество таких точек будет составлять луч АТ. Множество точек Pt, которые будут соответствовать точкам этого луча - дуга l. Причем, точка P(-pi/2) не принадлежит этой дуге.

На практическом занятии мы повторим основные типы заданий из темы «Тригонометрия», дополнительно разберем задачи повышенной сложности и рассмотрим примеры решения различных тригонометрических неравенств и их систем.

Данный урок поможет Вам подготовиться к одному из типов заданий В5, В7, С1 и С3.

Начнем с повторения основных типов заданий, которые мы рассмотрели в теме «Тригонометрия» и решим несколько нестандартных задач.

Задача №1 . Выполнить перевод углов в радианы и градусы: а) ; б) .

а) Воспользуемся формулой перевода градусов в радианы

Подставим в нее указанное значение .

б) Применим формулу перевода радиан в градусы

Выполним подстановку .

Ответ. а) ; б) .

Задача №2 . Вычислить: а) ; б) .

а) Поскольку угол далеко выходит за рамки табличного, уменьшим его с помощью вычитания периода синуса. Т.к. угол указан в радианах, то и период будем рассматривать как .

б) В данном случае ситуация аналогичная. Поскольку угол указан в градусах, то и период тангенса будем рассматривать как .

Полученный угол хоть и меньше периода, но больше , а это значит, что он относится уже не к основной, а к расширенной части таблицы. Чтобы не тренировать лишний раз свою память запоминанием расширенной таблицы значений тригофункций, вычтем период тангенса еще раз:

Воспользовались нечетностью функции тангенс.

Ответ. а) 1; б) .

Задача №3 . Вычислить , если .

Приведем все выражение к тангенсам, разделив числитель и знаменатель дроби на . При этом, можем не бояться, что , т.к. в таком случае значения тангенса не существовало бы.

Задача №4 . Упростить выражение .

Указанные выражения преобразовываются с помощью формул приведения. Просто они непривычно записаны с использованием градусов. Первое выражение вообще представляет собой число. Упростим все тригофункции по очереди:

Т.к. , то функция меняется на кофункцию, т.е. на котангенс, и угол попадает во вторую четверть, в которой у исходного тангенса знак отрицательный.

По тем же причинам, что и предыдущем выражении, функция меняется на кофункцию, т.е. на котангенс, а угол попадает в первую четверть, в которой у исходного тангенса знак положительный.

Подставим все в упрощаемое выражение:

Задача №5 . Упростить выражение .

Распишем тангенс двойного угла по соответствующей формуле и упростим выражение:

Последнее тождество является одной из формул универсальной замены для косинуса.

Задача №6 . Вычислить .

Главное, это не сделать стандартной ошибки и не дать ответ, что выражение равно . Воспользоваться основным свойством арктангенса нельзя пока возле него присутствует множитель в виде двойки. Чтобы от него избавиться распишем выражение по формуле тангенса двойного угла , при этом относимся к , как к обыкновенному аргументу.

Теперь уже можно применять основное свойство арктангенса, вспомним, что на его численный результат ограничений нет.

Задача №7 . Решить уравнение .

При решении дробного уравнения, которое приравнивается к нулю, всегда указывается, что числитель равен нулю, а знаменатель нет, т.к. на ноль делить нельзя.

Первое уравнение представляет собой частный случай простейшего уравнения, которое решается с помощью тригонометрической окружности. Вспомните самостоятельно этот способ решения. Второе неравенство решается как простейшее уравнение по общей формуле корней тангенса, но только с записью знака неравно.

Как видим, одно семейство корней исключает другое точно такое же по виду семейство не удовлетворяющих уравнению корней. Т.е. корней нет.

Ответ. Корней нет.

Задача №8 . Решить уравнение .

Сразу заметим, что можно вынести общий множитель и проделаем это:

Уравнение свелось к одной из стандартных форм, когда произведение нескольких множителей равно нулю. Мы уже знаем, что в таком случае или один из них равен нулю или другой, или третий. Запишем это в виде совокупности уравнений:

Первые два уравнения являются частными случаями простейших, с подобными уравнениями мы уже многократно встречались, поэтому сразу укажем их решения. Третье уравнение приведем к одной функции с помощью формулы синуса двойного угла.

Решим отдельно последнее уравнение:

Данное уравнение не имеет корней, т.к. значение синуса не могут выходить за пределы .

Таким образом, решением является только два первых семейства корней, их можно объединить в одно, что легко показать на тригонометрической окружности:

Это семейство всех половин , т.е.

Перейдем к решению тригонометрических неравенств. Сначала разберем подход к решению примера без использования формул общих решений, а с помощью тригонометрической окружности.

Задача №9 . Решить неравенство .

Изобразим на тригонометрической окружности вспомогательную линию, соответствующую значению синуса равному , и покажем промежуток углов, удовлетворяющих неравенству.

Очень важно понять, как именно указывать полученный промежуток углов, т.е. что является его началом, а что концом. Началом промежутка будет угол, соответствующей точке, в которую мы войдем в самом начале промежутка, если будем двигаться против часовой стрелки. В нашем случае это точка, которая находится слева, т.к. двигаясь против часовой стрелки и проходя правую точку, мы наоборот выходим из необходимого промежутка углов. Правая точка будет, следовательно, соответствовать концу промежутка.

Теперь необходимо понять значения углов начала и конца нашего промежутка решений неравенства. Типичная ошибка - это указать сразу, что правой точке соответствует угол , левой и дать ответ . Это неверно! Обратите внимание, что мы только что указали промежуток, соответствующий верхней части окружности, хотя нас интересует нижняя, иными словами, мы перепутали начало и конец необходимого нам интервала решений.

Чтобы интервал начинался с угла правой точки, а заканчивался углом левой точки, необходимо, чтобы первый указанный угол был меньше второго. Для этого угол правой точки нам придется отмерять в отрицательном направлении отсчета, т.е. по часовой стрелке и он будет равен . Тогда, начиная движение с него в положительном направлении по часовой стрелке, мы попадем в правую точку уже после левой точки и получим для нее значение угла . Теперь начало промежутка углов меньше конца , и мы можем записать промежуток решений без учета периода:

Учитывая, что такие промежутки будут повторяться бесконечное количество раз после любого целого количества поворотов, получим общее решение с учетом периода синуса :

Круглые скобки ставим из-за того, что неравенство строгое, и точки на окружности, которые соответствуют концам промежутка, мы выкалываем.

Сравните полученный ответ с формулой общего решения, которую мы приводили на лекции.

Ответ..

Указанный способ хорош для понимания того, откуда берутся формулы общих решений простейших тригонеравенств. Кроме того, он полезен для тех, кому лень учить все эти громоздкие формулы. Однако сам по себе способ тоже непростой, выберете, какой подход к решению вам наиболее удобен.

Для решения тригонометрических неравенств можно использовать и графики функций, на которых строится вспомогательная линия аналогично показанному способу с использованием единичной окружности. Если вам интересно, попробуйте самостоятельно разобраться с таким подходом к решению. В дальнейшем будем использовать общие формулы для решения простейших тригонометрических неравенств.

Задача №10 . Решить неравенство .

Воспользуемся формулой общего решения с учетом того, что неравенство нестрогое:

Получаем в нашем случае:

Ответ.

Задача №11 . Решить неравенство .

Воспользуемся формулой общего решения для соответствующего строго неравенства:

Ответ..

Задача №12 . Решить неравенства: а) ; б) .

В указанных неравенствах не надо спешить использовать формулы общих решений или тригонометрическую окружность, достаточно просто вспомнить об области значений синуса и косинуса.

а) Поскольку , то неравенство не имеет смысла. Следовательно, решений нет.

б) Т.к. аналогично , то синус от любого аргумента всегда удовлетворяет указанному в условии неравенству . Следовательно неравенству удовлетворяют все действительные значения аргумента .

Ответ. а) решений нет; б) .

Задача 13 . Решить неравенство .

Большинство студентов тригонометрические неравенства недолюбливают. А зря. Как говаривал один персонаж,

“Вы просто не умеете их готовить”

Так как же “готовить” и с чем подавать неравенство с синусом мы разберёмся в этой статье. Решать мы будем самым простым способом – с помощью единичной окружности.

Итак, перво-наперво нам потребуется следующий алгоритм.

Алгоритм решения неравенств с синусом:

  1. на оси синуса откладываем число $a$ и проводим прямую параллельно оси косинусов до пересечения с окружностью;
  2. точки пересечения этой прямой с окружностью будут закрашенными, если неравенство нестрогое, и не закрашенными, если неравенство строгое;
  3. область решения неравенства будет находится выше прямой и до окружности, если неравенство содержит знак “$>$”, и ниже прямой и до окружности, если неравенство содержит знак “$<$”;
  4. для нахождения точек пересечения, решаем тригонометрическое уравнение $\sin{x}=a$, получаем $x=(-1)^{n}\arcsin{a} + \pi n$;
  5. полагая $n=0$, мы находим первую точку пересечения (она находится или в первой, или в четвёртой четверти);
  6. для нахождения второй точки, смотрим, в каком направлении мы идём по области ко второй точке пересечения: если в положительном направлении, то следует брать $n=1$, а, если в отрицательном, то $n=-1$;
  7. в ответ выписывается промежуток от меньшей точки пересечения $+ 2\pi n$ до большей $+ 2\pi n$.

Ограничение алгоритма

Важно: д анный алгоритм не работает для неравенств вида $\sin{x} > 1; \ \sin{x} \geq 1, \ \sin{x} < -1, \ \sin{x} \leq -1$. В строгом случае эти неравенства не имеют решений, а в нестрогом – решение сводится к решению уравнения $\sin{x} = 1$ или $\sin{x} = -1$.

Частные случаи при решении неравенства с синусом

Важно отметить также следующие случаи, которые гораздо удобнее решить логически, не используя вышеуказанный алгоритм.

Частный случай 1. Решить неравенство:

$\sin{x} \leq 1.$

В силу того, что область значения тригонометрической функции $y=\sin{x}$ не больше по модулю $1$, то левая часть неравенства при любом $x$ из области определения (а область определения синуса – все действительные числа) не больше $1$. А, значит, в ответ мы записываем: $x \in R$.

Следствие:

$\sin{x} \geq -1.$

Частный случай 2. Решить неравенство:

$\sin{x} < 1.$

Применяя аналогичные частному случаю 1 рассуждения, получим, что левая часть неравенства меньше $1$ для всех $x \in R$, кроме точек, являющихся решением уравнения $\sin{x} = 1$. Решая это уравнение, будем иметь:

$x = (-1)^{n}\arcsin{1}+ \pi n = (-1)^{n}\frac{\pi}{2} + \pi n.$

А, значит, в ответ мы записываем: $x \in R \backslash \left\{(-1)^{n}\frac{\pi}{2} + \pi n\right\}$.

Следствие: аналогично решается и неравенство

$\sin{x} > -1.$

Примеры решения неравенств с помощью алгоритма.

Пример 1: Решить неравенство:

$\sin{x} \geq \frac{1}{2}.$

  1. Отметим на оси синусов координату $\frac{1}{2}$.
  2. Проведём прямую параллельно оси косинусов и проходящую через эту точку.
  3. Отметим точки пересечения. Они будут закрашенными, так как неравенство нестрогое.
  4. Знак неравенства $\geq$, а значит закрашиваем область выше прямой, т.е. меньший полукруг.
  5. Находим первую точку пересечения. Для этого неравенство превращаем в равенство и решаем его: $\sin{x}=\frac{1}{2} \ \Rightarrow \ x=(-1)^{n}\arcsin{\frac{1}{2}}+\pi n =(-1)^{n}\frac{\pi}{6} + \pi n$. Полагаем далее $n=0$ и находим первую точку пересечения: $x_{1}=\frac{\pi}{6}$.
  6. Находим вторую точку. Наша область идёт в положительном направлении от первой точки, значит $n$ полагаем равным $1$: $x_{2}=(-1)^{1}\frac{\pi}{6} + \pi \cdot 1 = \pi – \frac{\pi}{6} = \frac{5\pi}{6}$.

Таким образом, решение примет вид:

$x \in \left[\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2 \pi n\right], \ n \in Z.$

Пример 2: Решить неравенство:

$\sin{x} < -\frac{1}{2}$

Отметим на оси синусов координату $- \frac{1}{2}$ и проведём прямую параллельно оси косинусов и проходящую через эту точку. Отметим точки пересечения. Они будут не закрашенными, так как неравенство строгое. Знак неравенства $<$, а, значит, закрашиваем область ниже прямой, т.е. меньший полукруг. Неравенство превращаем в равенство и решаем его:

$\sin{x}=-\frac{1}{2}$

$x=(-1)^{n}\arcsin{\left(-\frac{1}{2}\right)}+ \pi n =(-1)^{n+1}\frac{\pi}{6} + \pi n$.

Полагая далее $n=0$, находим первую точку пересечения: $x_{1}=-\frac{\pi}{6}$. Наша область идёт в отрицательном направлении от первой точки, значит $n$ полагаем равным $-1$: $x_{2}=(-1)^{-1+1}\frac{\pi}{6} + \pi \cdot (-1) = -\pi + \frac{\pi}{6} = -\frac{5\pi}{6}$.

Итак, решением этого неравенства будет промежуток:

$x \in \left(-\frac{5\pi}{6} + 2\pi n; -\frac{\pi}{6} + 2 \pi n\right), \ n \in Z.$

Пример 3: Решить неравенство:

$1 – 2\sin{\left(\frac{x}{4}+\frac{\pi}{6}\right)} \leq 0.$

Этот пример решать сразу с помощью алгоритма нельзя. Для начала его надо преобразовать. Делаем в точности так, как делали бы с уравнением, но не забываем про знак. Деление или умножение на отрицательное число меняет его на противоположный!

Итак, перенесём всё, что не содержит тригонометрическую функцию в правую часть. Получим:

$- 2\sin{\left(\frac{x}{4}+\frac{\pi}{6}\right)} \leq -1.$

Разделим левую и правую часть на $-2$ (не забываем про знак!). Будем иметь:

$\sin{\left(\frac{x}{4}+\frac{\pi}{6}\right)} \geq \frac{1}{2}.$

Опять получилось неравенство, которое мы не можем решить с помощью алгоритма. Но здесь уже достаточно сделать замену переменной:

$t=\frac{x}{4}+\frac{\pi}{6}.$

Получаем тригонометрическое неравенство, которое можно решить с помощью алгоритма:

$\sin{t} \geq \frac{1}{2}.$

Это неравенство было решено в примере 1, поэтому позаимствуем оттуда ответ:

$t \in \left[\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2 \pi n\right].$

Однако, решение ещё не закончилось. Нам нужно вернуться к исходной переменной.

$(\frac{x}{4}+\frac{\pi}{6}) \in \left[\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2 \pi n\right].$

Представим промежуток в виде системы:

$\left\{\begin{array}{c} \frac{x}{4}+\frac{\pi}{6} \geq \frac{\pi}{6} + 2\pi n, \\ \frac{x}{4}+\frac{\pi}{6} \leq \frac{5\pi}{6} + 2 \pi n. \end{array} \right.$

В левых частях системы стоит выражение ($\frac{x}{4}+\frac{\pi}{6}$), которое принадлежит промежутку. За первое неравенство отвечает левая граница промежутка, а за второе – правая. Причём скобки играют немаловажную роль: если скобка квадратная, то неравенство будет нестрогим, а если круглая, то строгим. наша задача получить слева $x$ в обоих неравенствах .

Перенесём $\frac{\pi}{6}$ из левой части в правые, получим:

$\left\{\begin{array}{c} \frac{x}{4} \geq \frac{\pi}{6} + 2\pi n -\frac{\pi}{6}, \\ \frac{x}{4} \leq \frac{5\pi}{6} + 2 \pi n – \frac{\pi}{6}. \end{array} \right.$

Упрощая, будем иметь:

$\left\{\begin{array}{c} \frac{x}{4} \geq 2\pi n, \\ \frac{x}{4} \leq \frac{2\pi}{3} + 2 \pi n. \end{array} \right.$

Умножая левые и правые части на $4$, получим:

$\left\{\begin{array}{c} x \geq 8\pi n, \\ x \leq \frac{8\pi}{3} + 8 \pi n. \end{array} \right.$

Собирая систему в промежуток, получим ответ:

$x \in \left[ 8\pi n; \frac{8\pi}{3} + 8 \pi n\right], \ n \in Z.$



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама