THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

1. СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ И ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ.

1.1. Вулканизация элементарной серой.

1.1.1. Взаимодействие серы с ускорителями и активаторами.

1.1.2. Вулканизация каучука серой без ускорителя.

1.1.3. Вулканизация каучука серой в присутствии ускорителя.

1.1.4. Механизм отдельных стадий серной вулканизации в присутствии ускорителей и активаторов.

1.1.5. Вторичные реакции полисульфидных поперечных связей. Явления поствулканизации (перевулканизации) и реверсии.

1.1.6. Кинетическое описание процесса серной вулканизации.

1.2. Модификация эластомеров химическими реагентами.

1.2.1. Модификация фенолами и донорами метиленовых групп.

1.2.2. Модификация полигалоидными соединениями.

1.3. Структурирование циклическими производными тиомочевины.

1.4 Особенности структуры и вулканизации смесей эластомеров.

1.5. Оценка кинетики неизотермической вулканизации в изделиях.

2. ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ.

2.1. Объекты исследования

2.2. Методы исследования.

2.2.1. Исследование свойств резиновых смесей и вулканизатов.

2.2.2. Определение концентрации поперечных связей.

2.3. Синтез гетероциклических производных тиомочевины.

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ И ОБСУЖДЕНИЕ

РЕЗУЛЬТАТОВ

3.1. Изучение кинетических особенностей формирования вулканизационной сетки под действием серных вулканизующих систем.

3.2. Влияние модификаторов на структурирующее действие серных вулканизующих систем.

3.3 Кинетика вулканизации резиновых смесей на основе разнополярных каучуков.

3.4. Проектирование процессов вулканизации эластомерных изделий.

Рекомендованный список диссертаций

  • Разработка и исследование свойств резин на основе полярных каучуков, модифицированных полигидрофосфорильными соединениями, для изделий нефтебуровой техники 2001 год, кандидат технических наук Куцов, Александр Николаевич

  • Ингредиенты полифункционального действия на основе азометинов для технических резин 2010 год, доктор технических наук Новопольцева, Оксана Михайловна

  • Получение, свойства и применение эластомерных композиций, вулканизованных динитрозогенерирующими системами 2005 год, кандидат технических наук Макаров, Тимофей Владимирович

  • Физико-химическое модифицирование поверхностных слоев эластомеров при формировании композиционных материалов 1998 год, доктор технических наук Елисеева, Ирина Михайловна

  • Развитие научных основ технологии по созданию и переработке обувных термопластичных резин методом динамической вулканизации 2007 год, доктор технических наук Карпухин, Александр Александрович

Введение диссертации (часть автореферата) на тему «Исследование кинетики вулканизации диеновых каучуков комплексными структурирующими системами»

Качество резиновых изделий неразрывно связано с условиями формирования в процессе вулканизации оптимальной структуры пространственной сетки, позволяющей максимально реализовать потенциальные свойства эластомерных систем. В работах Б. А. Догадкина, В. А. Шершнева, Е. Э. Потапова, И. А. Туторского, JI. А. Шуманова, Тарасовой З.Н., Донцова A.A., W. Scheele, A.Y. Coran и др. ученых установлены основные закономерности течения процесса вулканизации, основанные на существовании сложных, параллельно-последовательных реакций сшивания эластомеров с участием низкомолекулярных веществ и активных центров - действительных агентов вулканизации.

Актуальными являются работы, продолжающие это направление, в частности в области описания вулканизационных характеристик эластомерных систем, содержащих комбинации ускорителей, агентов вулканизации, вторичных структурирующих агентов и модификаторов, совулканизации смесей каучуков. Различным подходам в количественном описании сшивания каучуков уделено достаточно внимания, однако изыскание схемы, которая максимально учитывает теоретическое описание кинетики действия структурирующих систем и экспериментальные данные заводских лабораторий, полученные в различных температурно-временных условиях, является актуальной задачей.

Это обусловливается большой практической значимостью методов расчета скорости и параметров процесса неизотермической вулканизации эластомерных изделий, в том числе методом компьютерного проектирования по данным ограниченного лабораторного эксперимента. Решение проблем, позволяющих достигать оптимальные эксплуатационные свойства в ходе производственных процессов вулканизации шин и резинотехнических изделий, в значительной степени зависит с совершенствованием методов математического моделирования неизотермической вулканизации применяемых в системах автоматизированного управления.

Рассмотрение проблем серной вулканизации, определяющих физико-химические и механические свойства вулканизатов, касающиеся кинетики и механизма реакции формирования и распада структуры поперечных связей вулканизационной сетки имеет очевидное практическое значение для всех специалистов связанных с переработкой каучуков общего назначения.

Возросший уровень упруго - прочностных, адгезионных свойств резин, диктуемый современными тенденциями в конструировании, не может быть достигнут без широкого применения в рецептуре модификаторов полифункционального действия, являющихся, как правило, вулканизующими соаген-тами, оказывающих влияние на кинетику серной вулканизации, характер образующейся пространственной сетки.

Исследование и расчет процессов вулканизации в настоящее время базируется во многом на экспериментальном материале, эмпирических и графоаналитических методах расчетов, которые до настоящего времени не нашли достаточного обобщенного анализа. Во многих случаях вулканизацион-ная сетка образована химическими связями нескольких типов неоднородно распределенными между фазами. В тоже время сложные механизмы межмолекулярного взаимодействия компонентов с образованием физических, координационных и химических связей, образования нестабильных комплексов и соединений, крайне осложняют описание процесса вулканизации, приводя многих исследователей к построению аппроксимаций для узких интервалов варьирования факторов.

Целью работы является исследование, уточнение механизма и кинетики нестационарных процессов, протекающих при вулканизации эластомеров и их смесей, разработка адекватных методов математического описания процесса вулканизации многокомпонентными модифицирующими структурирующими системами, в том числе шин и многослойных резинотехнических изделий, установление факторов, влияющих на отдельные стадии процесса в присутствии вторичных структурирующих систем. Разработка на этой основе методик вариантно-оптимизационных расчетов вулканизационных характеристик композиций на основе каучуков и их комбинаций, а также параметров их вулканизации.

Практическая значимость. Многокритериальная задача оптимизации впервые сводится к решению обратной кинетической задачи с применением 6 методов планирования кинетических экспериментов. Разработаны модели, позволяющие целенаправленно оптимизировать состав структурно-модифицирующих систем конкретных шинных резин и достигать максимальный уровень упруго-жесткостных свойств в готовых изделиях.

Научная новизна. Многокритериальная задача оптимизации процесса вулканизации и прогнозирования качества готовой продукции предлагается решения обратной химической задачи с применением методов планирования кинетических экспериментов. Определение параметров процесса вулканизации позволяет эффективно проводить управление и регулирование в нестационарной области

Апробация работы проводилась на Российских научных конференциях в Москве (1999), Екатеринбурге (1993), Воронеже (1996) и научно-технических конференциях ВГТА 1993-2000 годов.

Похожие диссертационные работы по специальности «Технология и переработка полимеров и композитов», 05.17.06 шифр ВАК

  • Моделирование неизотермической вулканизации автомобильных шин на основе кинетической модели 2009 год, кандидат технических наук Маркелов, Владимир Геннадьевич

  • Физико-химические основы и активирующие компоненты вулканизации полидиенов 2012 год, доктор технических наук Карманова, Ольга Викторовна

  • Шунгит - новый ингредиент для резиновых смесей на основе хлорсодержащих эластомеров 2011 год, кандидат химических наук Артамонова, Ольга Андреевна

  • Экологическая оценка и способы снижения эмиссии ускорителей серной вулканизации каучуков в производстве резиновых изделий 2011 год, кандидат химических наук Закиева, Эльмира Зиряковна

  • Вулканизация резиновых смесей с использованием оксидов металлов различного типа и качества 1998 год, кандидат технических наук Пугач, Ирина Геннадьевна

Заключение диссертации по теме «Технология и переработка полимеров и композитов», Молчанов, Владимир Иванович

1. Теоретически и практически обоснована схема, описывающая закономерности серной вулканизации диеновых каучуков, на основе дополнения известных уравнений теории индукционного периода реакциями образования, деструкции полисульфидных связей и модификации макромолекул эластомеров. Предложенная кинетическая модель позволяет описать периоды: индукционный, сшивания и реверсии вулканизации резин на основе изопренового и бутадиеновых каучуков и их комбинаций в присутствии серы и сульфенамидов, влияние температуры на модули вулканизатов.

2. Рассчитаны константы и энергии активации всех стадий процесса серной вулканизации в предложенной модели путем решения обратных кинетических задач полиизотермным методом, и отмечено их хорошее совпадение с литературными данными полученными другими методами. Соответствующий выбор параметров модели позволяет описать с ее помощью основные типы кинетических кривых.

3. На основе анализа закономерностей образования и деструкции сетки поперечных связей дано описание зависимости скорости процесса вулканизации эластомерных композиций от состава структурирующих систем.

4. Определены параметры уравнений предложенной схемы реакций для описания серной вулканизации в присутствии модификатора РУ и гексола. Установлено, что с увеличением относительной концентрации модификаторов возрастает содержание и скорость образования стабильных поперечных связей. Использование модификаторов не оказывает значимого влияния на образование полисульфидных связей. Скорость распада полисульфидных узлов вулканизационной сетки не зависит от концентрации компонентов структурирующей системы.

5. Установлено, что зависимости крутящего момента, измеренного на реометре, и условного напряжения при низких удлинениях от соотношения полихлоропренового и бутадиен-стирольного каучуков в эластомерных композициях свулканизованных, наряду с металлооксидной, серной вулканизующими системами, не всегда могут быть описаны гладкой кривой. Лучшая оценка зависимости условного напряжения от соотношения фаз каучуков в композиции, полученной при использовании в качестве ускорителя альтакса, описывается кусочно-непрерывной аппроксимацией. При средних значениях объемных соотношений фаз (а = 0,2 - 0,8) использовано уравнение Дэвиса для взаимопроникающих полимерных сеток. При концентрациях ниже порога перколяции (а =0,11 - 0,19) эффективные модули композиции вычисляли по уравнению Такаянаги основанному на представлении о параллельном расположении анизотропных элементов дисперсной фазы в матрице.

6. Показано, что циклические производные тиомочевины увеличивают число связей на границе раздела эластомерных фаз, условное напряжение при удлинении композиции и изменяют характер зависимости модуля от соотношения фаз по сравнением с альтаксом. Лучшая оценка концентрационной зависимости условного напряжения получена с использовании логистической кривой при низкой плотности поперечных связей и логарифмической кривой - при высоких.

8. Разработаны модульные программы для расчета кинетических констант по предложенным моделям, расчета температурных полей и степени вулканизации в толстостенных изделиях. Разработанный пакет программ позволяет выполнять расчеты технологических режимов вулканизации на стадии проектирования изделия и создания рецептур.

9. Разработаны методики расчета процессов нагрева и вулканизации многослойных резиновых изделий по вычисленным кинетическим константам предложенных кинетических моделей вулканации.

Точность совпадения расчетных и экспериментальных данных соответствует предъявляемым требованиям.

Список литературы диссертационного исследования кандидат химических наук Молчанов, Владимир Иванович, 2000 год

1. Догадкин Б.А., Донцов A.A., Шершнев В.А. Химия эластомеров.1. М.:Химия, 1981.-376 с.

2. Донцов A.A. Процессы структурирования эластомеров.- М.:Химия,1978.-288 с.

3. Кузьминский A.C., Кавун С.М., Кирпичев В.П. Физико-химическиеосновы получения, переработки и применения эластомеров.-М.:Химия, 1976.- 368 с.

4. Шварц А.Г., Фроликова В.Г., Кавун С.М., Алексеева И.К. Химическая модификация резин // В сб. научн. трудов "Пневматические шины из синтетического каучука" -М.: ЦНИИТЭнефтехим.-1979.- С.90

5. Мухутдинов А. А. Модификация серных вулканизующих системи ихкомпонентов: Тем. обзор.-М.:ЦНИИТЭнефтехим.-1989.-48 с.

6. Гаммет Л. Основы физической органической химии.1. М.:Мир, 1972.- 534 с.

7. Гофманн В. Вулканизация и вулканизующие агенты.-Л.: Химия,1968.-464 с.

8. Campbell R. Н., Wise R. W. Vulcanization. Part 1. Fate of Curing

9. System During the Sulfer Vulcanization of Natural Rubber Accelerated by Benzotiazole Derivatives//Rubber Chem. and Technol.-1964.-V. 37, N 3.- P. 635-649.

10. Донцов A.A., Шершнев В.А. Коллоидно-химические особенности вулканизации эластомеров. // Материалы и технология резиновогопроизводства.- М.,1984. Препринт А4930 (Межд. конф. по каучукуи резине. Москва, 1984 г.)

11. Sheele W., Kerrutt G. Vulcanization of Elastomers. 39. Vulcanization of

12. Natural Rubber and Synthetic Rubber by Sulfer and Sulfenamide. II //Rubber Chem. and Technol.-1965.- V. 38, N 1.- P.176-188.

13. Кулезнев B.H. // Коллоид, журнал.- 1983.-T.45.-N4.-C.627-635.

14. MoritaE., Young E. J. //Rubber Chem. and TechnoL-1963.-V. 36, N 4.1. P. 834-856.

15. Лыкйн A.C. Исследование влияния структуры вулканизационной сетки на эластичность и прочностные свойства резин// Коллоид.журнал.-1964.-Т.ХХУ1.-М6.-С.697-704.

16. Донцов A.A., Тарасова З.Н., Шершнев В.А. // Коллоид, журнал.1973.-T.XXXV.- N2.-C.211-224.

17. Донцов A.A., Тарасова З.Н., Анфимов Б.Н., Ходжаева И.Д. //Докл.

18. АН CCCP.-1973.-T.213.-N3.-C.653 656.

19. Донцов A.A., ЛякинаС.П., Добромыслова A.B. //Каучук и резина.1976.-N6.-C.15-18.

20. Донцов A.A., Шершнев В.А. Коллоидно-химические особенности вулканизации эластомеров. // Журн. Всес. хим. общ. им. Д.И.Менделеева, 1986.-T.XXXI.-N1.-C.65-68.

21. Мухутдинов А.А., Зеленова В.Н. Использование вулканизующей системы в виде твердого раствора. // Каучук и резина. 1988.-N7.-С.28-34.

22. Мухутдинов А.А., Юловская В.Д., Шершнев В.А., Смольянинов С.А.

23. О возможности уменьшения дозировки оксида цинка в рецептуре резиновых смесей. // Там же.- 1994.-N1.-C.15-18.

24. Campbell R. Н., Wise R. W. Vulcanization. Part 2. Fate of Curing System During the Sulfer Vulcanization of Natural Rubber Accelerated by Benzotiazole Derivatives //Rubber Chem. and Technol.-1964.- V. 37, N 3.- P. 650-668.

25. ТарасовД.В., Вишняков И.И., Гришин B.C. Взаимодействие сульфенамидных ускорителей с серой в температурных условиях, моделирующих режим вулканизации.// Каучук и резина.-1991.-№5.-С 39-40.

26. Гонтковская В.Т., Перегудов А.Н., Гордополова И.С. Решение обратных задач теории неизотермических процессов методом экспоненциальных множителей / Математические методы в химической кинетике.- Новосибирск: Наук. Сиб. отделение, 1990. С.121-136

27. Butler J., Freakley Р.К. Effect of humidity and water content on the curebehavior of a natural rubber accelerated sulfer compounds // Rubber Chem. and Technol. 1992. - 65, N 2. - C. 374 - 384

28. Geiser M., McGill WJ Thiuram-Accelerated sulfer vulcanization. II. Theformation of active sulfurating agent. // J. Appl. Polym. Sci. 1996. - 60, N3. - C.425-430.

29. Bateman L. e.a. The Chemistry and Physics of Rubber-like Substances /N.Y.: McLaren & Sons., 1963,- P. 449-561

30. Sheele W., Helberg J. Vulcanization of Elastomers. 40.Vulcanization of

31. Natural Rubber and Synthetic Rubber with Sulfer in Presence of

32. Sulfenamides. Ill //Rubber Chem. and Technol.-1965.- V. 38, N l.-P. 189-255

33. Gronski W., Hasenhinde H., Freund В., Wolff S. High resolutionsolidstate 13C NMR studies of the crosslink structure in accelerated sulfer vulcanized natural rubber //Kautsch. und Gummi. Kunstst.-1991.- 44, № 2.-C. 119-123

34. Coran A.Y. Vulcanization. Part 5. The formation of crosslincs in the system: natural rubber-sulfer-MBT-zink ion // Rubber Chem. and Techn., 1964.- V.37.- N3. -P.679-688.

35. Шершнев В.А. О некоторых аспектах серной вулканизации полидиенов // Каучук и резина, 1992.-N3.-C. 17-20,

36. Chapman A.V. The influence of excess zink stearate on the chemistry ofsulfer vulkanization of natural rubber // Phosph.,Sulfer and Silicon and Relat. Elem.-1991.V.-58-59 №l-4.-C.271-274.

37. Coran A.Y. Vulcanization. Part 7. Kinetics of sulfer vulcanization of natural rubber in presence of delayed-action accelerators // Rubber Chem. and Techn., 1965.-V.38.-N1.-P.l-13.

38. Kok С. M. The effects of conpounding variables on the reversion orocess in the sulphur vulcanization of natural rubber. // Eur. Polum. J.",-1987, 23, №8, 611-615

39. Krejsa M.R., Koenig J.L. Solid state carbonCo NMR studiesof elastomers XI.N-t-bytil beztiazole sulfenamide accelerated sulfer vulcanizationof cis-polyisoprene at 75 MHz // Rubber Chem. and Thecnol.-1993.- 66,Nl.-C.73-82

40. Кавун С. M., Подколозина М.М., Тарасова З.Н. // Высокомол. соед.-1968.- Т. 10.-N8.-C.2584-2587

41. Вулканизация эластомеров. / Под ред. Аллигера Г., Сьетуна И. -М.: Химия, 1967.-С.428.

42. Blackman E.J., McCall Е.В. //Rubb. Chem. Technol. -1970. -V. 43, N 3.1. P. 651-663.

43. Lager R. W. Recuring vulcanizates. I. A novel way to study the mechanism of vulcanization // Rubber Chem. and Technol.- 1992. 65, N l.-C. 211-222

44. Nordsiek K.N. Rubber microstructure and reversion. "Rubber 87: Int.Rubber Conf., Harrogate,1-5 June,1987. Pap." London,1987, 15A/1-15A/10

45. Гончарова JI.T., Шварц А.Г. Общие принципы создания резин для интенсификации процессов шинного производства.// Сб. научн. трудов Пневматические шины из синтетического каучука.- М.-ЦНИИТЭнефтехим.-1979. С.128-142.

46. Yang Qifa Анализ кинетики вулканизации бутилкаучука.// Hesheng xiangjiao gongye = China Synth. Rubber Ind. 1993.- 16, №5. c.283 -288.

47. Ding R., Leonov A. J., Coran A.Y. A study of the vulcanization kinetics of in accelerated-sulfer SBR compound /.// Rubb. Chem. and Technol. 1996. 69, N1. - C.81-91.

48. Ding R., Leonov A. Y. A kinetic model for sulfur accelerated vulcanization of a natural rubber compound // J. Appl. Polym. Sci. -1996. 61, 3. - C. 455-463.

49. Аронович Ф.Д. Влияние вулканизационных характеристик на надежность интенсифицированных режимов вулканизации толстостенных изделий// Каучук и резина.-1993.-N2.-C.42-46.

50. Пиотровский К.Б., Тарасова З.Н. Старение и стабилизация синтетических каучуков и вулканизатов.-М.: Химия, 1980.-264 с.

51. Пальм В.А. Основы количественной теории органических реакций1. Л.-Химия.-1977.-360 с

52. Туторский И.А., Потапов Е.Э., Сахарова Е.В. Исследование механизма взаимодействия полихлоропрена с молекулярными комплексами диоксифенолов и гексаметилентетрамина. //

53. Материалы и технология резинового производства.- Киев., 1978. Препринт А18 (Межд. конф. по каучуку и резине. М.: 1978 .)

54. Туторский И.А., Потапов Е.Э., Шварц А.Г., Модификация резин соединениями двухатомных фенолов// Тем. обзор. М.: ЦНИИТЭ нефтехим, 1976.-82 С.

55. Кравцов Е.И., Шершнев В.А.,Юловская В.Д.,Мирошников Ю.П.// Коллоид. журнал.-1987.-Т.49ХЫХ.-М.-5.-С.1009-1012.

56. Туторский И.А., Потапов Е.Э., Шварц А.Г. Химическая модификация эластомеров М.-Химия 1993 304 с.

57. В.А. Шершнев, А.Г. Шварц, Л.И. Беседина. Оптимизация свойств резин, содержащих в составе вулканизующей группы гексахлорпараксилол и окись магния.//Каучук и резина, 1974, N1, С.13-16.

58. Чавчич Т.А., Богуславский Д.Б., Бородушкина Х.Н., Швыдкая Н.П. Эффективность использования вулканизующих систем, содержащих алкилфенолформальдегидную смолу и серу // Каучук и резина. -1985.-N8.-C.24-28.

59. Петрова С.Б., Гончарова Л.Т., Шварц А.Г. Влияние природы вулканизующей системы и температуры вулканизации на структуру и свойства вулканизатов СКИ-3 // Каучук и резина, 1975.-N5.-C.12-16.

60. Шершнев В.А., Соколова JI.B. Особенности вулканизации каучукагексахлорпараксилолом в присутствии тиомочевины и окислов металлов.//Каучук и резина, 1974, N4, С. 13-16

61. Крашенинников H.A., Пращикина A.C., Фельдштейн М.С. Высокотемпературная вулканизация непредельных каучуков тиопроизводными малеимида // Каучук и резина, 1974, N12, С. 16-21

62. Блох Г.А. Органические ускорители вулканизации и вулка-низующиесистемы для эластомеров.-Jl.: Химия.-1978.-240 с.

63. Зуев Н.П., Андреев B.C., Гридунов И.Т., Унковский Б.В. Эффективность действия циклических пролизводных тиомочевин впокровных резинах легковых шин с белой боковиной //. "Производство шин РТИ и АТИ", М., ЦНИИТЭнефтехим, 1973.-№6 С. 5-8

64. Kempermann Т. // Kautsch, und Gummi. Runsts.-1967.-V.20.-N3.-P.126137

65. Донская M.M., Гридунов И.Т Циклические производные тиомочевины- полифункциональные ингредиенты резиновых смесей // Каучук и резина.- 1980.-N6.- С.25-28.; Гридунов И.Т., Донская М.М., //Изв. вузов. Серия хим. и хим. технол., -1969. Т.12, С.842-844.

66. Мозолис В.В., Йокубайтите С.П. Синтез N-замещенных тиомочевин// Успехи химии Т. XLIL- вып. 7,- 1973.-С. 1310-1324.

67. Burke J. Sythesis of tetrahydro-5-substituted-2(l)-s-triazones// Jörn, of American Chem. Society/-1947.- V. 69.- N9.-P.2136-2137.

68. Гридунов И.Т., и др., // Каучук и резина.- 1969.-N3.-C.10-12.

69. Потапов A.M., Гридунов И.Т. // Учен. зап. МИТХТ им. М.В. Ломоносова,-М.- 1971.-Т.1.-вып.З,-С.178-182.

70. Потапов A.M., Гридунов И.Т., и др. // Там же.- 1971.-Т.1.-вып.З,-С. 183-186.

71. Кучевский В.В.,Гридунов И.Т. //Изв. вузов. Серия хим. и хим.технол.,-1976. Т. 19, - вып.-1 .-С. 123-125.

72. Потапов A.M., Гридунов И.Т., и др. // Там же.- 1971.-Т.1.-вып.З,-С.183-186.

73. Потапов A.M., Гридунов И.Т., и др. // В кн. Химия и химическая технология.- М.- 1972.- С.254-256.

74. Кучевский В.В.,Гридунов И.Т. // Учен. зап. МИТХТ им. М.В. Ломоносова,-М.- 1972.-Т.2.-вып.1,-С.58-61

75. Казакова E.H., Донская М.М. ,Гридунов И.Т. // Учен. зап. МИТХТим. М.В. Ломоносова,-М.- 1976.-Т.6.- С. 119-123.

76. Кемперманн Т. Химия и технология полимеров.- 1963. -N6.-C.-27-56.

77. Кучевский В.В.,Гридунов И.Т. //Каучук и резина.- 1973.- N10.-C.19-21.

78. Борзенкова А.Я., Симоненкова Л.Б. // Каучук и резина.-1967.-N9.-С.24-25.

79. Эндрюс Л., Кифер Р. Молекулярные комплексы в органической химии: Пер. с англ. М.: Мир, 1967.- 208 с.

80. Татаринова Е.Л., Гридунов И.Т., Федоров А.Г., Унковский Б.В., Испытание резин на основе СКН-26 с новым ускорителем вулканизации пиримидинтионом-2. // Производство шин, РТИ и АТИ. M.-1977.-N1.-C.3-5.

81. Зуев Н.П., Андреев B.C., Гридунов И.Т., Унковский Б.В. Эффективность действия циклических пролизводных тиомочевин впокровных резинах легковых шин с белой боковиной //. "Производство шин РТИ и АТИ", М., ЦНИИТЭнефтехим, 1973.-№6 С. 5-8

82. Болотин А.Б., Киро З.Б., Пипирайте П.П., Симаненкова Л.Б. Электронная структура и реакционная способность производных этилентиомочевины// Каучук и резина.-1988.-N11-С.22-25.

83. Кулезнев В.Н. Смеси полимеров.-М.:Химия, 1980.-304 е.;

84. Тагер А.А. Физико-химия полимеров. М.: Химия, 1978. -544 с.

85. Нестеров А.Е., Липатов Ю.С. Термодинамика растворов и смесейполимеров.-Киев. Наукова думка, 1980.-260 с.

86. Нестеров А.Е. Справочник по физической химии полимеров. Свойства растворов и смесей полимеров. Киев. : Наукова думка, 1984.-Т. 1.-374 с.

87. Захаров Н.Д.,Леднев Ю.Н., Нитенкирхен Ю.Н.,Кулезнев В.Н. О роликоллоидно-химических факторов в создании двухфазных смесей эластомеров // Каучук и резина.-1976.-N1.-С. 15-20.

88. Липатов Ю.С. Коллоидная химия полимеров.-Киев: Наукова думка,1980.-260 с.

89. Шварц А.Г., Динсбург Б.Н. Совмещение каучуков с пластиками и синтетическими смолами.-М.:Химия, 1972.-224 с.

90. Мак-Донел Е., Береноул К., Эндриес Дж. В кн.: Полимерные смеси./Под ред.Д.Пола, С.Ньюмена.-М.:Мир,1981.-Т.2.-С.280- 311.

91. Lee B.L.,Singleton Ch. // J. Makromol.Sci.- 1983-84.- V. 22B.-N5-6.-P.665-691.

92. Липатов Ю.С. Межфазные явления в полимерах.-Киев: Наукова думка,1980.-260с.

93. Шутилин Ю.Ф. О релаксационно-кинетических особенностях струкутуры и свойств эластомеров и их смесей. // Высокомол. соед.-1987.-T.29A.-N8.-C. 1614-1619.

94. Ougizawa Т., Inowe Т., Kammer H.W. // Macromol.- 1985.-V.18.- N10.1. Р.2089-2092.

95. Hashimoto Т., Tzumitani Т. // Int. Rubber Conf.- Kyoto.-Oct.15-18,1985.-V.l.-P.550-553.

96. Takagi Y., Ougizawa Т., Inowe T.//Polimer.-1987.-V. 28. -Nl.-P.103-108.

97. Чалых A.E., Сапожникова H.H. // Успехи химии.- 1984.-Т.53.- N11.1. С.1827-1851.

98. Саборо Акияма//Сикудзай Кекайси.-1982.-Т.55-Ю.-С.165-175.

100. Липатов Ю.С. // Механика композ. матер.-1983.-Ю.-С.499-509.

101. Dreval V.E., Malkin A. Ya., Botvinnik G.O. // Jörn. Polimer Sei., Polymer Phys. Ed.-1973.-V.l 1.-P.1055.

102. Mastromatteo R.P., Mitchel J.M., Brett T.J. New accelerators for bleds of EPDM//Rubber Chem. and Technol.-1971.-V. 44, N 4.-P. 10651079.

103. Hoffmann W., Verschut C. // Kautsch, und Gummi. Runsts.-1982.-V.35.-N2.-P.95-107.

104. Шершнев B.A., Пестов С.С. // Каучук и резина.-1979.-N9.-С. 11-19.

105. Пестов С.С., Кулезнев В.Н., Шершнев В.А. // Коллоид.журнал.-1978.-T.40.-N4.-C.705-710.

106. Hoffmann W., Verschut С. // Kautsch, und Gummi. Runsts.-1982.-V.35.-N2.-P.95-107.

107. Шутилин Ю.Ф. // Высокомол. coefl.-1982.-T.24B.-N6.-C.444-445.

108. Шутилин Ю.Ф. // Там же.-1981.-Т.23Б.-Ш0.-С.780-783.

109. Manabe S., Murakami М. // Intern. J. Polim. Mater.-1981.-V.l.- N1.-P.47-73.

110. Чалых A.E., Авдеев H.H.// Высокомол. соед.-1985.-Т.27А. -N12.-С.2467-2473.

111. Носников А.Ф. Вопросы химии и химической технологии.-Харьков.-1984.-N76.-C.74-77.

112. Запп P.JI. Образование связей на границе раздела между различными эластомерными фазами // В кн.: Многокомпонентные полимерные системы.-М.:Химия,1974.-С.114-129.

113. Лукомская А.И. Исследование кинетики неизотермической вулканизации: Тем. обзор.-М. .ЦНИИТЭнефтехим.-1985.-56 с.

114. Лукомская А.И. в сб.научн.трудов НИИШП "Моделирование механического и теплового поведения резинокордных элементов пневматических шин в производстве". М., ЦНИИТЭнефтехим, 1982, с.3-12.

115. Лукомская А.И., Шаховец С.Е., //Каучук и резина.- 1983.- N5,-С.16-18.

116. Лукомская А.И., Минаев Н.Т., Кеперша Л.М., Милкова Е.М. Оценка степени вулканизации резин в изделиях, Тематический обзор. Серия "Производство шин", М., ЦНИИТЭнефтехим, 1972.-67 с.

117. Лукомская А.И., Баденков П.Ф., Кеперша Л.М. Расчеты и прогнозирование режимов вулканизации резиновых изделий., М.:Химия, 1978.-280с.

118. Машков A.B., Шиповский И.Я. К расчету полей температур и степени вулканизации в резиновых изделиях методом модельной прямоугольной области // Каучук и резина.-1992.-N1.-С. 18-20.

119. Борисевич Г.М., Лукомская А.И., Исследование возможности повышения точности расчета температур в вулканизуемых покрышках//Каучук и резина.- 1974.-N2,-С.26-29.

120. Пороцкий В.Г., Савельев В.В., Точилова Т.Г., Милкова Е.М. Расчетное проектирование и оптимизация процесса вулканизации шин. //Каучук и резина.- 1993.- N4,-C.36-39.

121. Пороцкий В.Г., Власов Г. Я. Моделирование и автоматизация вулканизационных процессов в производстве шин. //Каучук и резина.- 1995.- N2,-С. 17-20.

122. Верне Ш.М. Управление производственным процессом и его моделирование // Материалы и технология резинового производства.- М.-1984. Препринт С75 (Межд. конф. по каучуку и резине. Москва, 1984 г.)

123. Lager R. W. Recuring vulcanizates. I. A novel way to study the mechanism of vulcanization // Rubber Chem. and Technol.- 1992. 65, N l.-C. 211-222

124. Журавлев В. К. Построение экспериментальных формально-кинетических моделей процесса вулканизации. // Каучук и резина.-1984.- №1.-С.11-13.

125. Sullivan A.B., Hann C.J., Kuhls G.H. Vulcanization chemistry. Sulfer, N-t-butil-2-benzotiazole sulfenamide formulations studied by highperformance liquid chromatography.// Rubber Chem.and Technol. -1992. 65, N 2.-C. 488 - 502

126. Simon Peter, Kucma Anton, Prekop Stefan Kineticka analyza vulranizacie gumarenskych zmesi pomocou dynamickej vykonovej kalorimetrie // Plasty a kauc. 1997. - 3-4, 4. - C. 103-109.

127. Таблицы планов эксперимента для факторных и полиномиальных моделей.- М.: Металлургия, 1982.-С.752

128. Налимов В.В., Голикова Т.Н., Логические основания планирования эксперимента. М.: Металлургия, 1981. С. 152

129. Химмельблау Д. Анализ процессов статистическими методами. -М.:Мир, 1973.-С.960

130. Saville В., Watson A.A. Structural characterization of sulfer-vulcanized rubber network.// Rubber Chem. and Technol. 1967. - 40, N 1. - P. 100 - 148

131. Пестов С.С., Шершнев В.А., Габибулаев И.Д., Соболев B.C. Об оценке густоты пространственной сетки вулканизатов смесей каучуков // Каучук и резина.-1988.-N2.-C. 10-13.

132. Ускоренный метод определения межмолекулярного взаимодействия в модифицированных эластомерных композициях / Седых В.А., Молчанов В.И. // Информ. лист. Воронежского ЦНТИ, № 152(41) -99. -Воронеж, 1999. С. 1-3.

133. Быков В.И. Моделирование критических явлений в химической кинетике.- М. Наука.:, 1988.

134. Молчанов В.И., Шутилин Ю.Ф. О методике оценки активности ускорителей вулканизации // Шестая российская научно практическая конференция резинщиков "Сырьё и материалы для резиновой промышленности. От материалов к изделиям. Москва, 1999.-С.112-114.

135. A.A. Левицкий, С.А. Лосев, В.Н. Макаров Задачи химической кинетики в автоматизированной системе научных исследований Авогадро. в сб.научн.трудов Математические методы в химической кинетике. Новосибирск: Наука. Сиб. отд-ние, 1990.

136. Молчанов В.И., Шутилин Ю.Ф., Зуева С.Б. Моделирование вулканизации с целью оптимизации и контроля состава рецептур резиновых смесей // Материалы XXXIV отчетной научной конференции за 1994 год. ВГТА Воронеж, 1994- С.91.

137. Э.А. Кюллик, М.Р. Кальюранд, М.Н. Коэль. Применение ЭВМ в газовой хроматографии.- М.: Наука, 1978.-127 С.

138. Денисов Е.Т. Кинетика гомогенных химических реакций. -М.: Высш. шк., 1988.- 391 с.

139. Хайрер Э., Нерсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи /Пер. с англ.-М.: Мир, 1990.-512 с.

140. Новиков Е.А. Численные методы решения дифференциальных уравнений химической кинетики / Математические методы в химической кинетике.- Новосибирск: Наук. Сиб. отделение, 1990. С.53-68

141. Молчанов В.И. Исследование критических явлений в совулканизатах эластомеров //Материалы XXXVI отчетной научной конференции за 1997 год: В 2 ч.ВГТА. Воронеж, 1998. 4.1. С. 43.

142. Молчанов В.И., Шутилин Ю.Ф. Обратная задача кинетики структурирования смесей эластомеров // Всероссийская научно-практическая конференция "Физико-химические основы пищевых и химических производств."- Воронеж, 1996 С.46.

143. Белова Ж.В., Молчанов В.И. Особенности структурирования резин на основе непредельных каучуков // Проблемы теоретической и экспериментальной химии; Тез. докл. III Всерос. студ. научн. конф Екатеринбург, 1993 - С. 140.

144. Молчанов В.И., Шутилин Ю.Ф. Кинетика вулканизации резиновых смесей на основе разнополярных каучуков // Материалы XXXIII отчетной научной конференции за 1993 год ВТИ Воронеж, 1994-С.87.

145. Молчанов В.И., Котырев С.П., Седых В.А.Моделирование неизотермической вулканизации массивных резиновых образцов //Материалы XXXVIII юбилейной отчетной научной конференции за 1999 год: в 3 ч. ВГТА. Воронеж, 2000. 4.2 С. 169.

146. Молчанов В.И., Седых В.А., Потапова Н.В. Моделирование образования и деструкции эластомерных сеток // Материалы XXXV отчетной научной конференции за 1996 год: В 2 ч. / ВГТА. Воронеж, 1997. 4.1. С.116.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вулканиз а ция -- технологический процесс взаимодействия каучуков с вулканизующим агентом, при котором происходит сшивание молекул каучука в единую пространственную сетку. Вулканизующими агентами могут являться: сера, пероксиды, оксиды металлов, соединения аминного типа и др. Для повышения скорости вулканизации используют различные катализаторы-ускорители.

При вулканизации повышаются прочностные характеристики каучука, его твёрдость, эластичность, тепло- и морозостойкость, снижаются степень набухания и растворимость в органических растворителях. Сущность вулканизации - соединение линейных макромолекул каучука в единую "сшитую" систему, так называемую вулканизационную сетку. В результате вулканизации между макромолекулами образуются поперечные связи, число и структура которых зависят от метода В. При вулканизации некоторые свойства вулканизуемой смеси изменяются со временем не монотонно, а проходят через максимум или минимум. Степень вулканизации, при которой достигается наилучшее сочетание различных физико-механических свойств резин, называется оптимумом вулканизации.

Вулканизации подвергается обычно смесь каучука с различными веществами, обеспечивающими необходимые эксплуатационные свойства резин (наполнители, например сажа, мел, каолин, а также мягчители, противостарители и др.).

В большинстве случаев каучуки общего назначения (натуральный, бутадиеновый, бутадиен-стирольный) вулканизуют, нагревая их с элементарной серой при 140-160°С (серная В.). Образующиеся межмолекулярные поперечные связи осуществляются через один или несколько атомов серы. Если к каучуку присоединяется 0,5-5% серы, получается мягкий вулканизат (автомобильные камеры и покрышки, мячи, трубки и т.д.); присоединение 30-50% серы приводит к образованию жёсткого неэластичного материала - эбонита. Серная вулканизация может быть ускорена добавлением небольших количеств органических соединений, так называемых ускорителей вулканизации - каптакса, тиурама и др. Действие этих веществ в полной мере проявляется только в присутствии активаторов - окислов металлов (чаще всего окиси цинка).

В промышленности серную вулканизацию производят нагреванием вулканизуемого изделия в формах под повышенным давлением или же в виде неформовых изделий (в "свободном" виде) в котлах, автоклавах, индивидуальных вулканизаторах, аппаратах для непрерывной вулканизации. и др. В этих аппаратах нагревание осуществляют паром, воздухом, перегретой водой, электричеством, токами высокой частоты. Формы обычно помещают между обогреваемыми плитами гидравлического пресса. Вулканизация с помощью серы была открыта Ч. Гудьиром (США, 1839) и Т. Гэнкоком (Великобритания, 1843). Для вулканизации каучуков специального назначения применяют органические перекиси (например, перекись бензоила), синтетические смолы (например, феноло-формальдегидные), нитро- и диазосоединения и другие; условия процесса те же, что и для серной вулканизации.

Вулканизация возможна также под действием ионизирующей радиации - g-излучения радиоактивного кобальта, потока быстрых электронов (радиационная вулканизации). Методы бессерной и радиационной В. позволяют получать резины, обладающие высокой термической и химической стойкостью.

В полимерной промышленности вулканизация применяется в экструзионном производстве каучуков.

Вулканизация при р емонт е покрышек

Технологический процесс ремонта покрышек состоит из подготовки поврежденных участков для наложения починочных материалов, наложения починочных материалов на поврежденные участки и вулканизации ремонтируемых мест.

Вулканизация ремонтируемых мест является одной из самых важных операций при ремонте покрышек.

Сущность вулканизации заключается в том, что при нагреве до известной температуры в невулканизованной резине протекает физико-химический процесс, в результате которого резина приобретает эластичность, прочность, упругость и другие необходимые качества.

При вулканизации двух кусков резины, склеенных резиновым клеем, они превращаются в монолитную конструкцию и прочность их соединения не отличается от прочности сцепления основного материала внутри каждого куска. При этом для обеспечения необходимой прочности куски резины должны быть прижаты -- опрессованы под давлением 5 кг/см 2 .

Для того чтобы совершился процесс вулканизации, недостаточно произвести только нагрев до необходимой температуры, т. е. до 143+2°; процесс вулканизации не совершается мгновенно, поэтому нагретые покрышки необходимо выдержать определенное время при температуре вулканизации.

Вулканизация может произойти и при более низкой температуре, чем 143°, но при этом требуется больше времени. Так, например, при снижении температуры против указанной всего лишь на 10° время вулканизации должно быть увеличено в два раза. С целью сокращения времени на предварительный прогрев при вулканизации применяют электроманжеты, позволяющие вести прогрев одновременно с двух сторон покрышки, сокращая при этом время вулканизации и улучшая качество ремонта. При одностороннем прогреве покрышек большой толщины происходит перевулканизация участков резин, соприкасающихся с вулканизационным оборудованием, и недовулканизация резин с противоположной стороны. Время вулканизации в зависимости от вида повреждения и размера покрышки колеблется от 30 до 180 минут -- для покрышек и от 15 до 20 минут для камер

Для вулканизации в автохозяйствах применяется стационарный вулканизационный аппарат модели 601, выпускаемый трестом ГАРО.

В рабочий комплект вулканизационного аппарата входят корсеты для секторов, затяжки корсетов, протекторные и бортовые профильные пoдкладки, струбцины, прижимные накладки, песочные мешки, матрацы,.

При давлении пара в котле 4 кг/см 2 обеспечивается необходимая температура поверхности вулканизационного оборудования 143"+2°. При давлении 4,0--4,1 кг/см 2 предохранительный клапан должен открываться.

Вулканизационные аппараты перед пуском в эксплуатацию должны быть осмотрены инспектором котлонадзора.

Внутренние повреждения покрышек вулканизуются на секторах, наружные -- на плитах с применением профильных подкладок. Сквозные повреждения (при наличии электроманжет вулканизуются на плите с профильной подкладкой, при отсутствии электроманжет раздельно: сначала с внутренней стороны на секторе, затем с наружной на плите с профильной накладкой.

Электроманжета состоит из нескольких слоев резины и наружного слоя прорезиненного чефера, в середине которых помещена спираль из нихромовой проволоки для нагрева и терморегулятор для поддержания постоянной температуры (150°).

вулканизация промышленность ремонт покрышка

Рис. 4. Стационарный вулканизационный аппарат ГАРО модели 601: 1 -- сектор; 2 -- бортовая плита; 3 -- котел-парообразователь; 4 -- малые струбцины для камер; 5 -- кронштейн для камер; 6 -- манометр; 7--струбцина для покрышек; 8 -- топка; 9 -- водомерное стекло; 10 -- ручной плунжерный насос; 11 -- всасывающая трубка

Перед вулканизацией отмечают границы ремонтируемого участка покрышки. Для устранения прилипания тальком опудри-вают его, а также песочный мешочек, электроманжету и вулка-низационное оборудование (секторы, профильные подкладки и др.), соприкасающиеся с покрышкой.

При вулканизации на секторе опрессовка достигается с помощью затяжки корсета, а при вулканизации на плите с помощью мешка с песком и струбцины.

Профильные подкладки (протекторные и бортовые) подбираются в соответствии с ремонтируемым местом покрышки и ее размером.

Электроманжета при вулканизации располагается между покрышкой и песочным мешком.

Время начала и конца вулканизации отмечается мелом на специальной доске, установленной у вулканизационного оборудования.

Отремонтированные покрышки должны отвечать следующим требованиям:

1) покрышки не должны иметь неотремонтированных мест;

2) на внутренней стороне покрышки не должно быть вздутий и следов отслоений заплат, недовулканизации, складок и утолщений, ухудшающих работу камеры;

3) наложенные по протектору или боковине участки резины должны быть полностью свулканизованы до твердости по Шору 55--65;

4) восстановленные в процессе ремонта участки протектора размером более 200 мм должны иметь рисунок, одинаковый со всем протектором покрышки; рисунок типа «Вездеход» должен быть нанесен независимо от размера восстановленного участка протектора;

5) форма бортов покрышки не должна быть искажена;

6) утолщения и впадины, искажающие наружные габариты и поверхность покрышки, не допускаются;

7) отремонтированные участки не должны иметь отставаний; допускается наличие раковин или пор до 20 мм 2 по площади и до 2 мм глубиной в количестве не более двух на квадратный дециметр;

8) качество ремонта покрышек должно обеспечивать гарантийный их пробег после ремонта.

Вулканизация при р емонт е камер

Подобно технологическому процессу ремонта покрышек технологический процесс ремонта камер состоит из подготовки поврежденных участков для наложения заплат, наложения заплат и вулканизации.

В объем работ по подготовке поврежденных участков для наложения заплат входят: выявление скрытых и видимых повреждений, снятие старых невулканизованных заплат, закругление краев с острыми углами, шероховка резин вокруг повреждения, очистка камер от шероховальной пыли.

Рис. 5. Сектор для вулканизации покрышек: 1 -- сектор; 2 -- покрышка; 2 -- корсет; 4 -- затяжка

Рис. 6. Вулканизация бортовых повреждений покрышки на бортовой плите:1 -- покрышка; 2 -- бортовая плита: 3 -- бортовая подкладка; 4 -- мешок с песком; 5 -- металлическая накладка; 6 -- струбцина

Видимые повреждения выявляются внешним осмотром при хорошем освещении и обводятся химическим карандашом.

Для выявления скрытых повреждений, т. е. небольших проколов, незаметных на глаз, камера в надутом состоянии погружается в ванну с водой, и по выходящим пузырькам воздуха определяется место прокола, которое также обводится химическим карандашом. Поврежденная поверхность камеры подвергается шероховке карборундовым камнем или проволочной щеткой на ширине 25--35 мм от границ повреждения, не допуская попадания шероховальной пыли вовнутрь камеры. Зашерохованные места очищаются щеткой.

Починочными материалами для ремонта камер являются: невулканизованная камерная резина толщиной 2 мм, резина камер, негодных для ремонта, и прорезиненный чефер. Сырой, невулканизованной резиной заделываются все проколы и разрывы размером до 30 мм. Резиной для камер ремонтируются повреждения более 30 мм. Эта резина должна быть эластичной, без трещин и механических повреждений. Сырую резину освежают бензином, промазывают клеем концентрации 1: 8 и просушивают в течение 40--45 минут. Камеры шерохуют проволочной щеткой или карборундовым камнем на шероховальном станке, после чего их очищают от пыли, освежают бензином и просушивают в течение 25 минут, затем промазывают два раза клеем концентрации 1: 8 и просушивают после каждой намазки в течение 30--40 минут при температуре 20--30°. Чефер промазывают один раз клеем концентрации 1: 8, затем просушивают.

Заплату вырезают с таким расчетом, чтобы она со всех сторон перекрывала отверстие на 20--30 мм и была меньше границ зашерохованной поверхности на 2--3 мм. Накладывается она на ремонтируемый участок камеры одной стороной и постепенно прикатывается роликом по всей поверхности, так, чтобы между ней и камерой не осталось пузырьков воздуха. При наклейке заплат необходимо следить, чтобы склеиваемые поверхности были совершенно чистыми, свободными от влаги, пыли и жирных пятен.

В тех случаях, когда камера имеет разрыв свыше 500 мм, ее можно отремонтировать путем вырезки поврежденного куска и вставки на его место такого же куска из другой камеры того же размера. Этот метод ремонта получил название стыкования камер. Ширина стыка должна быть не менее 50 мм.

Поврежденная у корпусов вентилей наружная резьба восстанавливается с помощью плашек, а внутренняя -- метчиками.

При необходимости замены вентиля его вырезают вместе с фланцем и привулканизовывают на новом месте другой вентиль. Место расположения старого вентиля ремонтируют, как обычное повреждение.

Вулканизация поврежденных мест производится на вулканизационном аппарате модели 601 или на вулканизационном аппарате ГАРО для вулканизации камер. Время вулканизации заплат--15 минут и фланцев -- 20 минут при температуре 143+2°.

При вулканизации камера прижимаётся струбциной через деревянную накладку к поверхности плиты. Накладка должна быть больше заплаты на 10--15 мм.

Если ремонтируемый участок не помешается на плите, то вулканизуется он в две-три последовательные установки (ставки).

После вулканизации наплывы на незашерохованную поверхность срезают ножницами, а края заплат и заусенцы снимают на камне шероховального станка.

Отремонтированные камеры должны отвечать следующим требованиям:

1) камера, наполненная воздухом, должна быть герметична как по телу камеры, так и в месте крепления вентиля;

2) заплаты должны быть плотно привулканизованы, не иметь пузырей и пористости, их твердость должна быть одинаковой с резиной камеры;

3) края заплат и фланцев не должны иметь утолщений и отслоений;

4) резьба вентиля должна быть исправной.

Размещено на Allbest.ru

...

Подобные документы

    Понятие неметаллические материалы. Состав и классификация резин. Народнохозяйственное значение каучука. Резины общего и специального назначения. Вулканизация, этапы, механизмы и технология. Деформационно-прочные и фрикционные свойства резин и каучуков.

    курсовая работа , добавлен 29.11.2016

    Кинетика вулканизации резины. Особенности вулканизации смесей на основе комбинации каучуков CКД-CКН-40 обычными серными вулканизующими системами. Механизм разрушения полимера. Особенности разрушения полимеров в различных физических и фазовых состояниях.

    отчет по практике , добавлен 06.04.2015

    Разновидности каучука, особенности его применения в промышленности и технологии изготовления. Влияние введения дополнительных ингредиентов и использование вулканизации при изготовлении каучука на конечные свойства продукта. Охрана труда при работах.

    дипломная работа , добавлен 20.08.2009

    Получение динамических термоэластопластов путем смешения каучука с термопластом при одновременной вулканизации эластомера в процессе смешения (метод динамической вулканизации). Особенности влияния концентрации каучука на свойства механических смесей.

    курсовая работа , добавлен 08.06.2011

    Технология изготовления изделий из пластмасс прессованием. Основные группы пластмасс, их физические свойства, недостатки и способы переработки. Специальные свойства резины, зависящие от типа применяемого каучука. Сущность и значение вулканизации.

    лабораторная работа , добавлен 06.05.2009

    Анализ конструкции машины. Сущность процесса вулканизации и работа оборудования. Пресс-форма малоотходная и способ получения деталей с ее помощью. Содержание работ по ремонту механической части. Разработка предложений по модернизации и усовершенствованию.

    курсовая работа , добавлен 22.12.2014

    Понятие и основные этапы процесса сращивания кабелей, способы и принципы его реализации. Последовательность работ при холодном способе сращивания кабелей с применением компаунда К115Н или К-15, путем свободного обогрева с последующей вулканизацией.

    реферат , добавлен 12.12.2009

    Назначение, устройство, принцип действия червячного редуктора с верхним расположением червяка. Химический состав и свойства стали 20Х. Измерительные инструменты, применяемые при ремонте. Техника безопасности при ремонте технологического оборудования.

    дипломная работа , добавлен 28.04.2013

    Технология производства топливных гранул и брикетов, древесного угля, щепы, дров. Биогаз, биоэтанол, биодизель: особенности изготовления и направления практического использования, необходимое оборудование и материалы, перспективы использования в Коми.

    курсовая работа , добавлен 28.10.2013

    Основные технологии переработки автомобильных покрышек и резинотехнических изделий. Возможные способы применения резиновой крошки. Области применения корда. Перечень оборудования для переработки покрышек методом пиролиза и механическим способом.

Выводы

На основе системного анализа процесса гуммирования оцинкованной полосы определены модели и методы, применение которых необходимо для реализации метода управления: имитационная модель процесса сушки полимерного покрытия, метод оптимизации технологических параметров процесса полимеризации на основе генетического алгоритма и модель нейро-нечёткого управления процессом.

Определено, что разработка и реализация метода управления процессом вулканизации оцинкованной полосы на агрегате полимерных покрытий на основе нейро-нечетких сетей является актуальной и перспективной научно-технической задачей с точки зрения экономической выгоды, сокращения издержек и оптимизации производства.

Установлено, что процесс вулканизации оцинкованной полосы в печах агрегата покрытий металла является многосвязным объектом с распределённостью параметров по координате, работающим в условиях нестационарности и требует системного подхода к изучению.

Определены требования, предъявляемые к математическому обеспечению системы управления многосвязными тепловыми объектами агрегата покрытий металла: обеспечение функционирования в режиме непосредственной связи с объектом и в режиме реального времени, разнообразия выполняемых функций при их относительной неизменности во время эксплуатации, обмена информацией с большим количеством её источников и потребителей в процессе решения основных задач, работоспособности в условиях, ограничивающих время расчета управляющих воздействий.

МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ СИСТЕМЫ НЕЙРО-НЕЧЁТКОГО УПРАВЛЕНИЯ МНОГОСВЯЗНЫМИ ТЕПЛОВЫМИ ОБЪЕКТАМИ АГРЕГАТА ГУММИРОВАННЫХ ПОКРЫТИЙ МЕТАЛЛА

Системный анализ управления многосвязными тепловыми объектами агрегата гуммированных покрытий

Концептуальное проектирование - начальная стадия проектирования, на которой принимаются решения, определяющие последующий облик системы, и проводятся исследование и согласование параметров созданных решений с возможной их организацией. В настоящее время становится постепенно осознанным то, что для построения систем на качественно ином уровне новизны, а не просто их модернизации, необходимо быть вооруженным теоретическими представлениями о том, в каком направлении развиваются системы. Это необходимо для организации управления этим процессом, что повысит как показатели качества этих систем, так и эффективность процессов их проектирования, функционирования и эксплуатации .

На данном этапе необходимо сформулировать задачу управления, из которой получим задачи исследования. После анализа процесса полимеризации оцинкованной полосы как объекта управления необходимо определить границы предметной области, представляющие интерес при построении модели управления процессом, т.е. определиться с требуемым уровнем абстракции моделей, которые предстоит построить.

Важнейшим приемом системного исследования является представление любых сложных систем в виде моделей, т.е. применение метода познания, в котором описание и исследование характеристик и свойств оригинала заменяется описанием и исследованием характеристик и свойств некоторого другого объекта, который в общем случае имеет совершенно другое материальное или идеальное представление. Важно, что модель отображает не сам объект исследования в наиболее близком к оригиналу виде, а только те его свойства и структуры, которые в большей степени интересуют для достижения поставленной цели исследования.

Задача управления заключается в задании таких значений параметров процесса вулканизации оцинкованной полосы, которые позволят достичь максимального коэффициента прилипания при минимальном расходе энергоресурсов.

К качеству произведенного предварительно окрашенного проката предъявляется ряд требований, которые описаны в ГОСТ, перечисленных в разделе 1.3. Процесс сушки в печах агрегата гуммированных покрытий влияет только на качество прилипания к подложке. Поэтому такие дефекты как неравномерность покрытия, отклонение по блеску и рытвины в данной работе не рассматриваются.

Для осуществления процесса сушки полимерного покрытия необходимо знать следующий набор технологических параметров: температуры 7 печных зон (Tз1…Tз7), скорость линии (V), плотность и теплоёмкость металлической подложки (, с), толщина и начальная температура полосы (h, Tнач.), интервал температур полимеризации наносимой краски ().

Эти параметры в производстве принято называть рецептом.

Такие параметры как мощность вентиляторов, установленных в печных зонах, объем подводимого чистого воздуха, параметры взрывоопасности лаков исключаются из рассмотрения, так как они влияют на скорость прогрева зон перед сушкой и концентрацию взрывоопасных газов, которые в данной работе не раскрываются. Их регулирование осуществляется отдельно от управления самим процессом вулканизации.

Определим задачи исследования, которые необходимо выполнить для достижения цели управления. Отметим, что текущее состояние системного анализа предъявляет особые требования к решениям, принимаемым на основе исследования полученных моделей. Мало просто получить возможные решения (в данном случае, значения температур печных зон) - необходимо, чтобы они были оптимальны. Системный анализ, в частности позволяет предложить методики принятия решений по целенаправленному поиску приемлемых решений путем отбрасывания тех из них, которые заведомо уступают другим по заданному критерию качества. Цель его применения к анализу конкретной проблемы состоит в том, чтобы, применяя системный подход и, если это возможно, строгие математические методы, повысить обоснованность принимаемого решения в условиях анализа большого количества информации о системе и множества потенциально возможных решений .

В связи с тем, что на данном этапе нам известны только входные и выходные параметры моделей, опишем их с помощью подхода с позиции «чёрного ящика».

Первая задача, которую необходимо решить, - это построить имитационную модель процесса сушки покрытия, т.е. получить математическое описание объекта, использующееся для проведения экспериментов на компьютере в целях проектирования, анализа и оценки функционирования объекта. Это нужно, чтобы определить, до какой величины повысится температура поверхности металла (Тпов. вых.) при выходе из печи при заданных значениях скорости полосы, толщины, плотности, теплоёмкости и начальной температуры металла, а также температур печных зон. В дальнейшем сравнение величины, полученной на выходе этой модели, с температурой полимеризации краски позволит сделать вывод о качестве прилипания покрытия (рисунок 10).

Рисунок 10 - Концептуальная имитационная модель процесса сушки покрытия

Вторая задача - разработать метод оптимизации технологических параметров процесса вулканизации оцинкованной полосы. Для её решения необходимо осуществить формализацию критерия качества управления и построить модель оптимизации технологических параметров. В связи с тем, что регулирование температурного режима осуществляется за счёт изменения температур печных зон (Tз1…Tз7), данная модель должна оптимизировать их значения (Tз1опт…Tз7опт) согласно критерию качества управления (рисунок 11). Данная модель на вход получает и температуры вулканизации, поскольку без них невозможно определить качество прилипания краски к металлической подложке.


Рисунок 11 - Концептуальная модель оптимизации технологических параметров

Основные способы вулканизации каучуков . Для проведения основного химического процесса резиновой технологии – вулканизации – применяются вулканизующие агенты. Химизм процесса вулканизации заключается в образовании пространственной сетки, включающей линейные или разветвленные макромолекулы каучука и поперечные связи. Технологически вулканизация заключается в обработке резиновой смеси при температурах от нормальной до 220˚С под давлением и реже без него.

В большинстве случаев промышленная вулканизация проводится вулканизующими системами, включающими вулканизующий агент, ускорители и активаторы вулканизации и способствующими более эффективному протеканию процессов образования пространственной сетки.

Химическое взаимодействие между каучуком и вулканизующим агентом определяется химической активностью каучука, т.е. степенью ненасыщенности его цепей, наличием функциональных групп.

Химическая активность ненасыщенных каучуков обусловлена наличием в основной цепи двойных связей и повышенной подвижностью атомов водорода в a-метиленовых группах, соседних с двойной связью. Поэтому ненасыщенные каучуки можно вулканизовать всеми соединениями, взаимодействующими с двойной связью и соседними с ней группами.

Основным вулканизующим агентом для ненасыщенных каучуков является сера, которая обычно используется в виде вулканизующей системы совместно с ускорителями и их активаторами. Кроме серы можно использовать органические и неорганические пероксиды, алкилфенолформальдегидные смолы (АФФС), диазосоединения, полигалоидные соединения.

Химическая активность насыщенных каучуков существенно ниже активности ненасыщенных, поэтому для вулканизации нужно использовать вещества с высокой реакционной способностью, например различные пероксиды.

Вулканизация ненасыщенных и насыщенных каучуков может проводиться не только в присутствии химических вулканизующих агентов, но и под влиянием физических воздействий, инициирующих химические превращения. Это излучения высоких энергий (радиационная вулканизация), ультрафиолетовое излучение (фотовулканизация), длительное воздействие высоких температур (термовулканизация), действие ударных волн и некоторых других источников.

Каучуки, имеющие функциональные группы, можно вулканизовать по этим группам с помощью веществ, взаимодействующих с функциональными группами с образованием поперечной связи.

Основные закономерности процесса вулканизации. Независимо от типа каучука и применяемой вулканизующей системы в процессе вулканизации происходят некоторые характерные изменения свойств материала:

· Резко уменьшается пластичность резиновой смеси, появляется прочность и эластичность вулканизатов. Так, прочность сырой резиновой смеси на основе НК не превышает 1,5 МПа, а прочность вулканизованного материала - не менее 25 МПа.

· Существенно снижается химическая активность каучука: у ненасыщенных каучуков уменьшается количество двойных связей, у насыщенных каучуков и каучуков с функциональными группами – число активных центров. За счет этого повышается устойчивость вулканизата к окислительным и другим агрессивным воздействиям.

· Увеличивается устойчивость вулканизованного материала к действию пониженных и повышенных температур. Так, НК затвердевает при 0ºС и становится липким при +100ºС, а вулканизат сохраняет прочность и эластичность в температурном интервале от –20 до +100ºС.

Такой характер изменения свойств материала при вулканизации однозначно свидетельствует о протекании процессов структурирования, заканчивающихся формированием трехмерной пространственной сетки. Для того чтобы вулканизат сохранил эластичность, поперечные связи должны быть достаточно редкими. Так, в случае НК термодинамическая гибкость цепи сохраняется, если одна поперечная связь приходится на 600 атомов углерода основной цепи.

Процесс вулканизации характеризуется также некоторыми общими закономерностями изменения свойств в зависимости от времени вулканизации при постоянной температуре.

Поскольку наиболее существенно изменяются вязкостные свойства смесей, для исследования кинетики вулканизации используют сдвиговые ротационные вискозиметры, в частности реометры Монсанто. Эти приборы позволяют исследовать процесс вулканизации при температурах от 100 до 200ºС в течение 12 - 360 мин с различными сдвиговыми усилиями. Самописец прибора выписывает зависимость крутящего момента от времени вулканизации при постоянной температуре, т.е. кинетическую кривую вулканизации, имеющую S-образную форму и несколько участков, соответствующих стадиям процесса (рис. 3).

Первая стадия вулканизации называется индукционным периодом, стадией подвулканизации или стадией преждевременной вулканизации. На этой стадии резиновая смесь должна сохранять текучесть и хорошо заполнять всю форму, поэтому ее свойства характеризуются минимальным моментом сдвига М мин (минимальная вязкость) и временем t s , в течение которого сдвиговый момент увеличивается на 2 единицы по сравнению с минимальным.

Продолжительность индукционного периода зависит от активности вулканизационной системы. Выбор вулканизующей системы с тем или иным значением t s определяется массой изделия. При вулканизации происходит сначала прогрев материала до температуры вулканизации, и вследствие низкой теплопроводности каучука время прогрева пропорционально массе изделия. По этой причине для вулканизации изделий большой массы должны выбираться вулканизующие системы, которые обеспечивают достаточно длительный индукционный период, а для изделий с малой массой - наоборот.

Вторая стадия называется главным периодом вулканизации. По завершении индукционного периода в массе резиновой смеси накапливаются активные частицы, вызывающие быстрое структурирование и соответственно нарастание крутящего момента до некоторого максимального значения М макс. Однако завершением второй стадии считается не время достижения М макс, а время t 90 , соответствующее М 90 . Этот момент определяется по формуле

М 90 =0,9 DМ + М мин,

где DМ – разность крутящих моментов (DМ=М макс – М мин).

Время t 90 – это оптимум вулканизации, величина которого зависит от активности вулканизующей системы. Угол наклона кривой в главном периоде характеризует скорость вулканизации.

Третья стадия процесса называется стадией перевулканизации, которой в большинстве случаев на кинетической кривой соответствует горизонтальный участок с постоянными свойствами. Эта зона называется плато вулканизации. Чем шире плато, тем устойчивее смесь к перевулканизации.

Ширина плато и дальнейший ход кривой в основном зависят от химической природы каучука. В случае ненасыщенных линейных каучуков, таких как НК и СКИ-3, плато неширокое и затем происходит ухудшение свойств, т.е. спад кривой (рис. 3, кривая а ). Процесс ухудшения свойств на стадии перевулканизации называется реверсией . Причиной реверсии является деструкция не только основных цепей, но и образовавшихся поперечных связей под действием высокой температуры.

В случае насыщенных каучуков и ненасыщенных каучуков с разветвленной структурой (значительное количество двойных связей в боковых 1,2-звеньях) в зоне перевулканизации свойства изменяются незначительно, а в ряде случаев даже улучшаются (рис. 3, кривые б и в ), поскольку термоокисление двойных связей боковых звеньев сопровождается дополнительным структурированием.

Поведение резиновых смесей на стадии перевулканизации важно в производстве массивных изделий, особенно автомобильных покрышек, поскольку за счет реверсии может произойти перевулканизация наружных слоев при недовулканизации внутренних. В этом случае требуются вулканизующие системы, которые обеспечивали бы продолжительный индукционный период для равномерного прогрева покрышки, высокую скорость в главном периоде и широкое плато вулканизации на стадии перевулканизации.

Кузнецов А.С. 1 , Корнюшко В.Ф. 2

1 Аспирант, 2 Доктор технических наук, профессор, заведующий кафедрой Информационных систем в химической технологии, Московский технологический университет

ПРОЦЕССЫ СМЕШЕНИЯ И СТРУКТРИРОВАНИЯ ЭЛАСТОМЕРНЫХ СИСТЕМ КАК ОБЪЕКТЫ УПРАВЛЕНИЯ В ХИМИКО-ТЕХНОЛОГИЧЕСКОЙ СИСТЕМЕ

Аннотация

В статье с позиций системного анализа рассмотрена возможность объединения процессов смешения и структурирования в единую химико-технологическую систему получения изделий из эластомеров.

Ключевые слова: смешение, структурирование, система, системный анализ, управление, контроль, химико-технологическая система.

Kuznetsov A . S . 1 , Kornushko V . F . 2

1 Postgraduate stadent, 2 PhD in Engineering, Professor, Head of the department of Informational systems in chemical technology, Moscow State University

MIXING AND STRUCTURING PROCESSES AS CONTROL OBJECTS IN CHEMICAL-ENGINEERING SYSTEM

Abstract

The article describes the possibility of combining on the basis of system analysis the mixing and vulcanization processes in the unified chemical-engineering system of elastomer’s products obtaining.

Keywords: mixing, structuring, system, system analysis, direction, control, chemical-engineering system.

Введение

Развитие химической промышленности невозможно без создания новых технологий, увеличения выпуска продукции, внедрения новой техники, экономного расходования сырья и всех видов энергии, создания малоотходных производств.

Промышленные процессы протекают в сложных химико-технологических системах (ХТС), которые представляют собой совокупность аппаратов и машин, объединенных в единый производственный комплекс для выпуска продукции.

Современное производство изделий из эластомеров (получение эластомерного композиционного материала (ЭКМ), или резины) характеризуется наличием большого количества стадий и технологических операций, а именно: подготовка каучука и ингредиентов, развеска твердых и сыпучих материалов, смешение каучука с ингредиентами, формование сырой резиновой смеси – полуфабриката, и, собственно, сам процесс пространственного структурирования (вулканизации) резиновой смеси – заготовки для получения готового изделия с комплексом заданных свойств.

Все процессы производства изделий из эластомеров тесно связаны между собой, поэтому точное соблюдение всех установленных технологических параметров необходимо для получения продукции надлежащего качества. Получению кондиционной продукции способствует использование различных методов контроля основных технологических величин на производстве в центральных заводских лабораториях (ЦЗЛ).

Сложность и многостадийность процесса получения изделий из эластомеров и необходимость контроля основных технологических показателей подразумевают к рассмотрению процесса получения изделий из эластомеров в качестве сложной химико-технологической системы, включающей в себя все технологические стадии и операции, элементы анализа основных стадий процесса, их управления и контроля.

  1. Общая характеристика процессов смешения и структурирования

Получению готовой продукции (изделия с комплексом заданных свойств) предшествуют два основных технологических процесса системы производства изделий из эластомеров, а именно: процесс смешения и, собственно, вулканизация сырой резиновой смеси. Контроль за соблюдением технологических параметров этих процессов является обязательной процедурой, обеспечивающей получение продукции надлежащего качества, интенсификацию производства, и предотвращение образование брака.

На начальном этапе имеются каучук – полимерная основа, и различные ингредиенты. После развески каучука и ингредиентов приступают к процессу смешения. Процесс смешения представляет собой размалывание ингредиентов, и сводится к более равномерному распределению их в каучуке и лучшему диспергированию.

Процесс смешения проводят на вальцах или в резиносмесителе. В результате мы получаем полуфабрикат – сырую резиновую смесь – промежуточный продукт, которую в дальнейшем подвергают вулканизации (структурированию). На этапе сырой резиновой смеси контролируется равномерность смешения, проверяется состав смеси, оценивают ее вулканизационную способность.

Равномерность смешения проверяется по показателю пластичности резиновой смеси. Из разных участков резиновой смеси отбираются пробы, и определяется показатель пластичности смеси, для разных образцов он должен быть примерно одинаков. Пластичность смеси Р должна в пределах погрешности совпадать с указанной в паспорте рецептуры для конкретной резиновой смеси.

Вулканизационная способность смеси проверяется на виброреометрах различной конфигурации. Реометр в данном случае представляет собой объект физического моделирования процесса структурирования эластомерных систем.

В результате вулканизации получают готовое изделие (резина, эластомерный композиционный материал. Таким образом, резина представляет собой сложную многокомпонентную систему (рис. 1.)

Рис. 1 – Состав эластомерного материала

Процесс структурирования представляет собой химический процесс превращения сырой пластичной резиновой смеси в эластичную резину за счет образования пространственной сетки химических связей, а также технологический процесс получения изделия, резины, эластомерного композиционного материала путем закрепления требуемой формы для обеспечения требуемой функции изделия.

  1. Построение модели химико-технологической системы
    производства изделий из эластомеров

Любое химическое производство представляет собой последовательность трех основных операций: подготовка сырья, собственно химическое превращение выделение целевых продуктов. Эта последовательность операцийвоплощается в единую сложную химико-технологическую систему (ХТС). Современное химическое предприятие состоит из большого числа взаимосвязанных подсистем, между которыми существуют отношения соподчиненности в виде иерархической структуры с тремя основными ступенями (рис. 2). Производство эластомеров не является исключением, причем на выходе получается готовое изделие с заданными свойствами.

Рис. 2 – Подсистемы химико-технологической системы производства изделий из эластомеров

Основой построения подобной системы, как, впрочем, и любой химико-технологической системы производственных процессов, является системный подход. Системная точка зрения на отдельный типовой процесс химической техпологии позволяет развить научно обоснованную стратегию комплексного анализа процесса и на этой основе построения развернутой программы синтеза его математического описания для реализации в дальнейшем программ управления.

Данная схема представляет собой пример химико-технологической системы с последовательным соединением элементов. Согласно принятой классификации, самым малым уровнем является типовой процесс.

В случае производства эластомеров в качестве таких процессов рассматривают отдельные стадии производства: процесс навески ингредиентов, нарезки каучука, смешение на вальцах или в резиносмесителе, пространственное структурирование в аппарате вулканизации.

Следующий уровень представлен цехом. Для производства эластомеров может быть представлен как состоящий из подсистем подачи и подготовки исходного сырья, блока проведения смешения и получения полуфабриката, а также завершающего блока структурирования и выявления брака.

Главные производственные задачи по обеспечению требуемого уровня качества конечной продукции, интенсификации технологических процессов, анализа и контролирования процессов смешения и структурирования, предотвращение образования брака, проводятся именно на этом уровне.

  1. Выбор основных параметров для контроля и управления технологическими процессами смешения и структурирования

Процесс структурирования представляет собой химический процесс превращения сырой пластичной резиновой смеси в эластичную резину за счет образования пространственной сетки химических связей, а также технологический процесс получения изделия, резины, эластомерного композиционного материала путем закрепления требуемой формы для обеспечения требуемой функции изделия.

В процессах производства изделий из эластомеров управляемыми параметрами являются: температура Tс при смешении и вулканизации Тв, давление Р при прессовании, время τ обработки смеси на вальцах, а также время вулканизации (оптимум) τопт..

Температура полуфабриката на вальцах измеряется игольчатой термопарой или термопарой с самопишущими приборами. Имеются также датчики температуры. Ее обычно контролируют, изменяя расход охлаждающей воды для вальцев при помощи регулировки вентиля. На производстве применение находят регуляторы расхода охлаждающей воды.

Давление контролируется при применении масляного насоса с установленными датчиком давления и соответствующим регулятором.

Установление параметров изготовления смеси производится вальцовщиком по контрольным картам, где содержатся необходимые значения параметров процесса.

Контроль качества полуфабриката (сырой смеси) проводится специалистами центральной заводской лаборатории (ЦЗЛ) завода-изготовителя по паспорту смеси. При этом основным элементом контроля качества смешения и оценки вулканизационной способности резиновой смеси являются данные виброреометрии, а также анализ реометрической кривой, которая представляет собой графическое изображение процесса, и рассматривается как элемент управления и корректировки процесса структурирования эластомерных систем

Процедура оценки вулканизационных характеристик проводится технологом по паспорту смеси и базам данных реометрических испытаний каучуков и резин.

Контроль получения кондиционного изделия – завершающая стадия – проводится специалистами отдела технического контроля качества готовой продукции по данным испытаний технических свойств изделия.

При контроле качества резиновой смеси одного определенного состава существует некоторый определенный интервал значений показателей свойств, при соблюдении которых получают изделия с требуемыми свойствами.

Выводы:

  1. Применение системного подхода при анализе процессов производства изделий из эластомеров позволяет наиболее полно отследить параметры, отвечающие за качество протекания процесса структурирования.
  2. Основные задачи по обеспечению требуемых показателей технологических процессов процессов ставятся и решаются на уровне цеха.

Литература

  1. Теория систем и системный анализ в управлении организациями: ТЗЗ Справочник: Учеб. пособие / Под ред. В.Н. Волковой и А.А. Емельянова. – М.: Финансы и статистика, 2006. – 848 с: ил. ISBN 5-279-02933-5
  2. Холоднов В.А., Хартманн К.,Чепикова В.Н., Андреева В.П.. Системный анализ и принятие решений. Компьютерные технологии моделирования химико-технологических систем с материальными и тепловыми рециклами. [Текст]: учебное пособие./ В.А. Холоднов, К. Хартманн. СПб.: СПбГТИ (ТУ), 2006.-160 с.
  3. Агаянц И.М., Кузнецов А.С., Овсянников Н.Я. Модификация осей координат при количественной интерпретации реометрических кривых – М.: Тонкие химические технологии 2015 г. Т.10 № 2, с64-70.
  4. Новаков И.А., Вольфсон С.И., Новопольцева О.М., Кракшин М.А. Реологические и вулканизационные свойства эластомерных композиций. – М.: ИКЦ «Академкнига», 2008. – 332 с.
  5. Кузнецов А.С., Корнюшко В.Ф., Агаянц И.М. \Реограмма как инструмент управления технологическим процессом структурирования эластомерных систем \ М:. НХТ-2015 с.143.
  6. Кашкинова Ю.В. Количественная интерпретация кинетических кривых процесса вулканизации в системе организации рабочего места технолога – резинщика: автореф. дис. … канд. техн. наук. – Москва, 2005. – 24 с.
  7. Чернышов В.Н. Теория систем и системный анализ: учеб. пособие / В.Н. Чернышов, А.В. Чернышов. – Тамбов: Изд-во Тамб. гос. техн. ун-та., 2008. – 96 с.

References

  1. Teoriya sistem i sistemnyj analiz v upravlenii organizaciyami: TZZ Spravochnik: Ucheb. posobie / Pod red. V.N. Volkovoj i A.A. Emel’yanova. – M.: Finansy i statistika, 2006. – 848 s: il. ISBN 5-279-02933-5
  2. Holodnov V.A., Hartmann K.,CHepikova V.N., Andreeva V.P.. Sistemnyj analiz i prinyatie reshenij. Komp’yuternye tekhnologii modelirovaniya himiko-tekhnologicheskih sistem s material’nymi i teplovymi reciklami. : uchebnoe posobie./ V.A. Holodnov, K. Hartmann. SPb.: SPbGTI (TU), 2006.-160 s.
  3. Agayanc I.M., Kuznecov A.S., Ovsyannikov N.YA. Modifikaciya osej koordinat pri kolichestvennoj interpretacii reometricheskih krivyh – M.: Tonkie himicheskie tekhnologii 2015 g. T.10 № 2, s64-70.
  4. Novakov I.A., Vol’fson S.I., Novopol’ceva O.M., Krakshin M.A. Reologicheskie i vulkanizacionnye svojstva ehlastomernyh kompozicij. – M.: IKC «Akademkniga», 2008. – 332 s.
  5. Kuznecov A.S., Kornyushko V.F., Agayanc I.M. \Reogramma kak instrument upravleniya tekhnologicheskim processom strukturirovaniya ehlastomernyh sistem \ M:. NHT-2015 s.143.
  6. Kashkinova YU.V. Kolichestvennaya interpretaciya kineticheskih krivyh processa vulkanizacii v sisteme organizacii rabochego mesta tekhnologa – rezinshchika: avtoref. dis. … kand. tekhn. nauk. – Moskva, 2005. – 24 s.
  7. CHernyshov V.N. Teoriya sistem i sistemnyj analiz: ucheb. posobie / V.N. CHernyshov, A.V. CHernyshov. – Tambov: Izd-vo Tamb. gos. tekhn. un-ta., 2008. – 96 s.


THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама