THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Цветное зрение у птиц заметно отличается от зрения человека. В частности, воспринимаемый диапазон длин волн у птиц шире, и заметно сдвинут в УФ-область. Как и у человека, у птиц обработку зрительного сигнала обеспечивают два вида фоторецепторов на сетчатке глаз - палочки и колбочки, но их количество, свойства, морфология и биохимия несколько иные. Птицы имеют гораздо больше цветовых рецепторов в сетчатке, чем млекопитающие, и больше связей зрительного нерва между фоторецепторами и мозгом.









Тимоти Голдсмит провел фундаментальное исследование цветного зрения у птиц. С помощью флюоресцентного микроскопа на тканях глаз и клеточных культурах были получены изображения, подтвердившие недоказанные до него многокомпонентные теории цветного зрения пернатых.

Строение сетчатки глаза птиц

Фоторецепторы сетчатки глаза птиц представлены двумя видами клеток: палочками и колбочками. Фоторецепторы воспринимают свет и преобразуют его в нервный импульс. Палочки содержат пигмент родопсин, а колбочки - йодопсин, состоящий из нескольких зрительных пигментов, таких как хлоролаб (чувствительный к желто-зеленой области спектра) и эритролаб (чувствительный к желто-красной части спектра). У дневных видов птиц палочек всего один вид, так же как и у млекопитающих, а вот колбочек целых шесть (у человека и приматов - три вида, а других млекопитающих – два), и каждый вид имеет свой цвет, зависящий от состава и формы масляных капелек, содержащих высокую концентрацию каротиноидов. Эти естественные «фильтры» увеличивают эффективность поглощения зрительным пигментом соответствующей волны света. Четыре вида колбочек, максимально чувствительных к фиолетовой (ультрафиолетовой), синей, зеленой и красной областям спектра, обеспечивают птицам тетрахроматическое цветное зрение. Оставшиеся два вида соединены вместе и функционируют как единый фоторецептор. Они называются двойными колбочками, и их роль состоит в восприятии не цвета, а движущегося объекта. Количество колбочек разных цветов различно. Больше всего в сетчатке двойных колбочек (40,7%), затем зеленых (21,1%), красных (17,1%), синих (12,6%) и фиолетовых (8,5%). Некоторые птицы, например , имеют дополнительный, пятый тип колбочек, поэтому их относят к пентахроматам.


Колбочки перемешаны между собой, но не беспорядочно: колбочки каждого цвета образуют, независимо от других, сложную и строго организованную мозаику, причем колбочка каждого цвета окружена только рецепторами других цветов, но не своего. Пространственное распределение колбочек было определено на модели глаз цыпленка с помощью анализа цветных масляных капелек во внутренней доле фоторецепторов колбочек. Закономерность, найденная в глазных тканях цыплятах, оказалась верной и для других видов птиц.

Зрительная система некоторых групп птиц модифицирована в связи с образом жизни. Например, имеют особенно высокую плотность фоторецепторов. Глаза хищника размещены таким образом, что обеспечивают хорошее бинокулярное видение, позволяющее точно оценивать расстояния. Ночные разновидности хищных птиц, например, имеют трубчатые глаза и небольшое количество цветовых фоторецепторов (колбочек), что компенсируется большим количеством палочек, которые эффективно функционируют при плохом освещении. Морские птицы, такие как крачки, чайки и альбатросы, имеют колбочки с красными или жёлтыми масляными капельками, что позволяет видеть на больших расстояниях в условиях тумана.

У людей и лошадей цветовое восприятие перестает работать с наступлением темноты. Однако, световой порог не является одинаковым для всех позвоночных. Гекконы, например, различают цвета и в темноте. К количеству света особенно чувствительны птицы. В экспериментах, проведенных группой исследователей Лундского университета, различие цветов птицами прекращалось сразу после захода Солнца. Оказалось, что для восприятия цветов птицам нужно в 5-20 раз больше света, чем людям. Несмотря на то, что птицы практически лучше всех позвоночных различают цвета в дневное время, - они первые, кто теряют данную способность с наступлением сумерек.

Гнездо с яйцами кажется птицам более разноцветным по сравнению с тем, как видим его мы. Большая часть птиц видит основной цвет скорлупы яйца, к которому добавляются два пигмента, протопорфирин и биливердин. Распределение и концентрация этих пигментов определяет окраску яиц, которые могут оказаться как однотонными, так и в крапинку. Первый окрашивает яйца в коричневый цвет, второй - в зеленый и синий. Самые важные цветовые вариации создаются в ультрафиолетовом спектре, не воспринимаемым нашими глазами, но имеющем важное значение в жизни птиц.

Список литературы:

1. Константинов В. М. , Наумов С. П., Шаталова С. П. Зоология позвоночных (учебник для ВУЗов). Академия, 2000.
2. Биологический энциклопедический словарь/ гл. ред. М. С. Гиляров; Редкол.: А. А. Баев, Г. Г. Винберг, Г. А. Заварзин и др. – 2-е изд., исправл. – М.: Сов. Энциклопедия, 1989. – 864 с., ил., 30л. ил.

Зрение является наиболее развитым органом чувств у птиц. Глаз представляет собой шаровидное образование, покрытое многими оболочками.

Снаружи внутрь (кроме передней части глаза) расположены следующие оболочки: склера, сосудистая, пигментная и сетчатка. Спереди склера продолжается прозрачной роговицей, а сосудистая - ресничным телом и радужной оболочкой. Под влиянием сокращения мышц радужной оболочки отверстие в ней - зрачок - изменяется в размере. Непосредственно за радужной оболочкой лежит хрусталик, а между ним и роговицей находится маленькая, заполненная жидкостью, передняя камера глаза. Сзади радужной оболочки и хрусталика глазной бокал заполнен студнеобразным стекловидным телом.

Наиболее резкое различие глаза птиц от глаза млекопитающих - это отсутствие кровеносных сосудов сетчатки; но вместо этого в глазе птиц имеется специальная сосудистая структура, выступающая в стекловидное тело - гребень. Другое отличие - это наличие в сетчатке у птиц двух или даже трех ямок (fovea) - участков более острого зрения. Эти участки особенно развиты у хищных птиц. Мышцы ресничного тела и радужной оболочки поперечнополосатые, а у млекопитающих гладкие. Склера у птиц и рептилий в своей передней части усилена костными пластинками. Большинство этих отличий представляет адаптацию к зрению во время полета и прямо или косвенно обусловливает более острое зрение птиц по сравнению с млекопитающими. Вследствие этого птиц называют Augentiere. В связи с тем что у птиц каждый глаз связан лишь с одной стороной мозга (полный перекрест нервов), зрительные восприятия каждого глаза являются независимыми и бинокулярное зрение у птиц имеет меньшее значение, чем монокулярное.

Развитие глаза протекает в темноте; глаз как бы защищен от преждевременного включения функции. Глазные пузырьки, возникшие как выпячивания промежуточного мозга, превращаются в настоящие пузырьки с пережатием у основания к 40-45 час. инкубации. С 50-55 час. происходит значительное продвижение в развитии глаза. Глазные пузырьки начинают выпячиваться, образуя двухстенную чашу, а полый стебелек, связывающий их с мозгом, становится все более узким. Внутренний слой глазной чаши (первоначально наружная стенка глазного пузырька) - зачаток сетчатки становится толще, чем наружный, который является зачатком пигментного слоя, радужной оболочки и ресничного тела. Глазная чаша имеет отверстие, обращенное наружу и вниз. Наружная часть становится зрачком, а нижняя, впоследствии закрывающаяся, называется хороидальной, или зародышевой, щелью. Закрытие ее тесно связано с развитием гребня.

Хрусталик возникает отдельно от глазного пузырька в виде утолщения поверхностной эктодермы у 40-часового куриного эмбриона. Затем происходит инвагинация этого утолщения, и у 62-74-часовых эмбрионов хрусталиковый пузырек отделяется от поверхностной эктодермы. Стенки хрусталикового пузырька утолщаются, и полость его исчезает. Клетки хрусталика перестают делиться, удлиняются, ядра в них исчезают и становятся волокновидными. Хрусталик вылупившегося цыпленка содержит более 500 слоев волокон, а процесс их образования продолжается и после вылупления. Преципитиновый тест показал наличие протеинов взрослого хрусталика в хрусталиковом пузырьке 60-часового эмбриона. Следовательно, химическая дифференциация хрусталика предшествует морфологической. Капсула хрусталика (сумка) - это, по-видимому, продукт деятельности его клеток. К ней прикрепляются цинновы связки, отходящие от ресничного тела. У 4-дневного эмбриона верхние края глазной чаши сходятся по бокам хрусталика.

Основной частью глаза, воспринимающей зрительные изображения, является сетчатка, располагающаяся между пигментным эпителием и стекловидным телом. Сетчатка состоит из 5 слоев: ганглиозного, внутреннего сетчатого, внутреннего ядерного, наружного сетчатого и наружного ядерного. Свет, проходя сквозь роговицу, зрачок, хрусталик, стекловидное тело и сетчатку, отражается от пигментного слоя. К нему направлены отростки зрительных клеток (ядра их расположены в наружном ядерном слое), воспринимающие свет: палочки (черно-белое) и колбочки (цветное изображение). У дневных птиц в сетчатке преобладают колбочки, у ночных - палочки. Вызванное светом раздражение передается через аксоны зрительных клеток на синапсы дендритов биполярных нейронов (ядра которых расположены во внутреннем ядерном слое), причем один биполярный нейрон объединяет до 30 зрительных клеток. Аксоны же биполяров образуют синапсы с дендритами ганглиозных клеток, аксоны которых растут вдоль борозды в стенке глазного стебелька по направлению к головному мозгу и образуют зрительный нерв.

Ямка сетчатки (участок острого зрения) появляется в центре маленькой утолщенной площадки, которая, по-видимому, является результатом более хорошего кровоснабжения вследствие раннего утолщения сосудистой оболочки в этом участке. Ямка образуется в результате радиальной миграции клеток от центра площадки. В области ямки имеется наибольшее скопление колбочек и палочек. У птиц, вылупляющихся с закрытыми глазами, утолщенная площадка и ямка в ней не начинают развиваться до момента вылупления, а наиболее быстрая дифференциация ямки происходит после открытия глаз. Сетчатка птиц значительно толще, чем у других животных, элементы ее более четко организованы, а различные чувствительные слои более резко отграничены. У разных видов птиц имеются различия в структуре сетчатки - в основном это различное соотношение палочек и колбочек и положение и глубина ямок, участков острого зрения. В гистологическом развитии сетчатки куриного эмбриона можно различить три периода:

1) размножение клеток со 2-го по 8-й день; 2) клеточная перегруппировка с 8-го по 10-й; 3) окончательная дифференциация после 10-го дня инкубации. Нейробласты и нервные волокна имеются в сетчатке уже к концу 3-го дня. Палочки и колбочки начинают дифференцироваться на 10-12-й день. Палочки и колбочки в сетчатке куриного эмбриона достигают к концу инкубации той стадии развития, которая наблюдается у домашнего воробья только через несколько дней после вылупления. Говардовский и Харкеевич показали, что у 10-дневного куриного эмбриона будущие зрительные клетки имеют цилиндрическую форму и плотно прикреплены к пигментному эпителию, что, по-видимому, играет большую роль в снабжении фоторецепторных клеток витамином А из пигментного эпителия. Витамин А необходим для построения молекул зрительного пигмента - родопсина - и тех мембранных структур, в которых он локализуется. На 18-19-й день инкубации структура рецепторной клетки усложняется в связи с включением в нее родопсина.

Приведем несколько работ по гистохимии развития сетчатки куриного эмбриона. Содержание ацетилхолина и холинэстеразная активность в сетчатке увеличивается равномерно с 8-го до 19-го дня развития куриного эмбриона, а затем резко возрастает. Активность щелочной фосфатазы тоже внезапно увеличивается между 17-м и 19-м днями. По-видимому, нервные элемены сетчатки созревают к 19-му дню и способны проводить импульсы, так как рефлекс сужения зрачка может быть впервые вызвап именно в это время. Сотрудниками Винникова показано, что: 1) витамин А участвует в регуляции выхода ионов на свету и в темноте и обусловливает состояние общего возбуждения рецептора; 2) в сетчатке имеется сукциноксидазная и цитохромоксидазная активность, указывающая, по-видимому, на транспорт электронов и регенерацию АТФ; 3) активность окислительных энзимов в митохондриях фоторецепторов, как правило, повышается на свету и падает в темноте; при освещении митохондрии палочек набухают, а митохондрии колбочек не изменяются.

Гребень глаза сильно варьирует в размере и форме у различных видов птиц. Это тонкая, темнопигментированная пластинка, складывающаяся веером и выступающая в стекловидное тело с вентральной поверхности глаза. Гребень может иметь от 5 до 30 складок и быть коротким или длинным, достигая хрусталика. Он состоит главным образом из сосудистой сети, поддержанной пигментированной соединительной тканью (клетки глии). На 6-й день развития куриного эмбриона гребень выдается в стекловидное тело в виде низкого гребешка вдоль линии слияния стенок хороидальной щели. Пигмент появляется в нем после 8 дней, а складки начинают образовываться на 9-10-й день инкубации. У взрослых птиц гребень целиком пронизан капиллярами, а в основании его лежат артерии и вена. Возможно, что гребень, кроме снабжения сетчатки питательными веществами, обеспечивает и защиту ее от сильного света. Кроме того, в обзоре Дементьева указывается, что гребень играет роль в питании стекловидного тела и, возможно, служит для согревания глаза и для увеличения остроты зрительных восприятий.

Обращенные вперед края глазной чаши образуют к 8-9-му дню радужную оболочку, а мышечные волокна начинают появляться в ней с 7-го дня. Мышцы радужной оболочки: сфинктерная (для сокращения зрачка) и радиальная (для его расширения) поперечнополосатые, что обусловливает произвольное сокращение зрачка (особенно проявляется у хищных птиц). Сфинктерная мышца появляется на 8-9-й день, а радиальная - на 13-19-й день. Цвет радужной оболочки обусловлен пигментными клетками, пигментными тельцами и цветовыми жировыми каплями.

Складки ресничного тела (от 85 до 150 у взрослых экземпляров разных видов птиц), расположенного в центре радужной оболочки расходятся радиально от хрусталика по меридианам глаза. Ресничные отростки (центральные окончания складок) выходят за границу радужной оболочки, а связки (цинновы), отходящие от желобков между ними, прикрепляются к хрусталиковой сумке. Первые ресничные отростки появляются на 6-9-й день развития куриного эмбриона и состоят вначале из направленных к хрусталику выростов мезенхимы. У 16-17-дневного куриного эмбриона их уже около 90. Ресничное тело секретирует жидкость передней камеры глаза, благодаря которой осуществляется диффузное питание хрусталика и роговицы и регулируется внутриглазное давление.

Зачаточная ресничная мышца появляется на 8-й день в виде пучка миобластов; ее поперечная волосатость впервые видна у 11-дневного эмбриона. Сокращение ресничной мышцы, действуя на склеру, сокращает экваториальный диаметр глазного яблока, увеличивает внутриглазное давление и толкает хрусталик и переднюю часть глаза вперед, для близкого видения. По другой теории, ресничная мышца действует на роговицу, которая косвенно изменяет напряжение связки гребня и изменяет форму хрусталика. Дементьев считает, что аккоммодация глаза у птиц происходит всеми тремя способами: изменением формы хрусталика, формы роговицы и расстояния между роговицей и хрусталиком.

Эпителий роговицы (конъюктива) происходит из эктодермы, но подстилающая его часть роговицы происходит из мезенхимы. Роговица осуществляет две функции: грубой фокусировки глаза и защитных очков. Та часть глаза куриного эмбриона, где будет образовываться стекловидное тело, на 4-й день развития Состоит из волокнистой сетки неопределенного строения.

Сосудистая оболочка и склера возникают из мезенхимы, которая облекает глазную чашу в течение эмбрионального развития и участвует также в образовании ресничного тела и роговицы. Сосудистая оболочка осуществляет питание глаза. Раннее развитие сосудистой оболочки состоит в конденсации мезенхимы, соприкасающейся с наружным слоем глазной чаши, что заметно уже у 5-дневного эмбриона. Далее - на 13-14-й день - размер капиллярной сети сосудистой оболочки увеличивается, а затем снаружи его появляется слой более крупных сосудов; пигментация ткани начинается на 8-й день. У внутренней поверхности сосудистой оболочки имеется так называемое «зеркальце» (tapetum lucidum), отражающее свет и раздражающее своим отблеском сетчатку, что позволяет ей улавливать зрительные впечатления при слабом освещении. Развитие склеры начинается одновременно с сосудистой оболочкой, а на 9-й день уже могут быть различимы в ней ранние белковые косточки.

На 7-й день развития куриного эмбриона спереди глазного яблока образуется покровная круговая складка с отверстием в центре, которая превращается в дальнейшем в нижнее и верхнее веки. Внутри нее одновременно образуется полукруглая складка со стороны клюва - мигательная перепонка, или третье веко. У куриного эмбриона веки сомкнуты до 18-го дня инкубации, а у некоторых птенцовых птиц (воробьиные, дятлы, кукушки и др.) веки открываются только через несколько дней после вылупления.

Глаза - это особый орган, которым наделены все живые существа на планете. Мы знаем, в каких красках видим мир, а вот каким его видят животные? Какие цвета видят кошки, а какие нет? Черно-белое ли зрение у собак? Знания о зрении животных помогут нам шире посмотреть на окружающий нас мир и понять особенности поведения своих домашних питомцев.

Особенности зрения

И все-таки, как животные видят? По отдельным показателям у животных зрение более совершенное, чем у человека, но зато оно уступает в возможности различать цветовую гамму. Большинство зверей видят только в определенной для их вида палитре. Так, например, долгое время считалось, что собаки видят только в черно-белых тонах. А змеи вообще слепы. Но последние исследования доказали, что животные видят разную длину волны, в отличие от человека.

Мы, благодаря зрению, получаем более 90% информации о мире, который нас окружает. Глаза для нас - преобладающий орган чувств. Интересно, что зрение животных по своей остроте существенно превышает человеческую. Не секрет, что пернатые хищники видят в 10 раз лучше. Орел способен обнаружить добычу в полете с расстояния в несколько сот метров, а сапсан выслеживает голубя с высоты в километр.

Отличие также состоит в том, что большинство животных отлично видят в темноте. Фоторецепторные клетки сетчатки их глаза фокусируют свет, и это позволяет животным, ведущим ночной образ жизни, улавливать потоки света в несколько фотонов. А то, что глаза многих зверей светятся в темноте, объясняется тем, что под сетчаткой расположен уникальный светоотражающий слой называемый тапетум. А теперь давайте рассмотрим отдельные виды животных.

Лошади

Грациозность лошади и ее выразительные глаза вряд ли кого-то могут оставить равнодушным. Но часто тем, кто учится ездить верхом, говорят, что подходить к лошади сзади опасно. Но почему? Как животные видят, что у них происходит за спиной? Да никак - у лошади за спиной находится и поэтому она легко может испугаться и взбрыкнуть.

Глаза лошади расположены так, что она способна видеть в двух ракурсах. Ее зрение как бы разделено надвое - каждый глаз видит свою картинку, из-за того что глаза расположены по бокам головы. Но если лошадь смотрит вдоль носа, то она видит одно изображение. Также это животное имеет периферийное зрение и превосходно видит в сумерках.

Добавим немножко анатомии. В сетчатке любого живого существа находятся рецепторы двух видов: колбочки и палочки. От количества колбочек зависит цветовое зрение, а палочки отвечают за периферическое. У лошадей количество палочек преобладает над тем, какое находится у человека, а вот рецепторы-колбочки сопоставимы. Это говорит о том, что у лошадей также есть цветное зрение.

Кошки

Многие дома держат животных, и самые распространенные, конечно, кошки. Зрение животных, а особенно семейства кошачьих, значительно отличается от человеческого. Зрачок у кошки не круглый, как у большинства животных, а вытянутый. Он остро реагирует на большое количество яркого света сужением до небольшой щели. Этот показатель говорит, что в сетчатке глаза животных находится большое количество палочек-рецепторов, за счет которых они прекрасно видят в темноте.

А как же цветное зрение? Какие цвета видят кошки? До недавнего времени считалось, что кошки видят в черно-белом цвете. Но исследования показали, что хорошо различает серые, зеленые и синие цвета. К тому же видит множество оттенков серого - до 25 тонов.

Собаки

Зрение собак отличается от того, к чему мы привыкли. Если снова вернуться к анатомии, то в глазах человека находятся три вида колбочек-рецепторов:

  • Первый воспринимает длинноволновое излучение, которое отличает оранжевый и красный цвета.
  • Второй - средневолновое. Именно на этих волнах мы видим желтый и зеленый.
  • Третий, соответственно, воспринимает короткие волны, на которых различимы голубой и фиолетовый.

Глаза животных отличаются наличием двух видов колбочек, поэтому собаки не видят оранжевые и красные цвета.

Это отличие не единственное - собаки дальнозорки и видят лучше всего движущиеся предметы. Расстояние, с которого они видят неподвижный предмет, насчитывает до 600 метров, а вот движущийся объект собаки замечают уже с 900 метров. Именно по этой причине лучше всего не убегать от четырехлапых охранников.

Зрение практически не является основным органом у собаки, по большей части они идут за запахом и слухом.

А теперь давайте подведем итог - какие цвета видят собаки? В этом они похожи на людей-дальтоников, видят голубой и фиолетовый, желтый и зеленый, а вот смесь цветов может казаться им просто белой. Но лучше всего собаки, как и кошки, различают серые цвета, причем до 40 оттенков.

Коровы

Многие верят, и нам часто преподносят, что домашние парнокопытные остро реагируют на красный цвет. В действительности же глаза этих животных воспринимают цветовую палитру в очень размытых нечетких тонах. Поэтому быки и коровы больше всего реагируют на движение, чем на то, как окрашена ваша одежда или каким цветом машут перед их мордой. Интересно, а кому понравится, если перед его носом начнут махать какой-либо тряпкой, втыкая, впридачу, в загривок копья?

И все-таки, как животные видят? Коровы, судя по строению их глаз, способны различать все цвета: белый и черный, желтый и зеленый, красный и оранжевый. Но только слабо и размыто. Интересно, что у коров зрение похоже на увеличительное стекло, и именно по этой причине они часто пугаются, увидев неожиданно подходящих к ним людей.

Ночные животные

Многие животные, ведущие ночной образ жизни, имеют Например, долгопят. Это маленькая обезьянка, которая выходит на охоту ночью. Размер ее не превышает белку, но это единственный в мире примат, питающийся насекомыми и ящерицами.

Глаза этого животного огромны и не поворачиваются в глазницах. Но при этом у долгопята очень гибкая шея позволяющая ему вращать головой на все 180 градусов. Он также имеет необыкновенное периферийное зрение, позволяющее видеть даже ультрафиолетовое излучение. Но цвета различает долгопят очень слабо, как и все

Хочется сказать и о наиболее распространенных обитателях городов в ночное время - летучих мышах. Долгое время предполагалось, что они не пользуются зрением, а летают только благодаря эхолокации. Но последние исследования показали, что у них отличное ночное зрение, и более того - летучие мыши способны выбирать, лететь ли им на звук или включать ночное видение.

Рептилии

Рассказывая, как животные видят, нельзя умолчать о том, как видят змеи. Сказка про Маугли, где удав своим взглядом завораживает обезьян, приводит в трепет. Но правда ли это? Давайте разберемся.

У змей очень слабое зрение, на это влияет защитная оболочка, покрывающая глаз рептилии. От этого названные органы кажутся мутными и принимают тот ужасающий вид, о котором слагают легенды. Но зрение для змей не главное, в основном, они нападают на движущиеся объекты. Поэтому в сказке и говорится, что обезьяны сидели как в оцепенении - они инстинктивно знали, как спасаться.

Не все змеи имеют своеобразные тепловые датчики, но все же инфракрасное излучение и цвета они различают. Змея обладает бинокулярным зрением, а значит, она видит две картинки. А мозг, быстро обрабатывая полученную информацию, дает ей представление о размерах, расстоянии и очертаниях потенциальной жертвы.

Птицы

Птицы поражают разнообразием видов. Интересно, что и зрение у этой категории живых существ тоже сильно различается. Все зависит от того, какой образ жизни ведет птица.

Так, всем известно, что хищники обладают чрезвычайно острым зрением. Некоторые виды орлов могут замечать свою добычу с высоты более километра и камнем падать вниз, чтобы ее поймать. А известно ли вам, что отдельные виды хищных птиц способны видеть ультрафиолет, который позволяет им находить в темноте ближайшие норки

А живущий у вас дома волнистый попугайчик имеет великолепное зрение и способен видеть все в цвете. Исследования доказали, что данные особи различают друг друга при помощи яркого оперения.

Конечно, эта тема очень широка, но, надеемся, что и приведенные факты пригодятся вам для понимания того, как видят животные.

Эти таинственные чувства

Зрение птиц

Мы привыкли смотреть на мир двумя глазами сразу, пользоваться бинокулярным, глубинным зрением. У большинства птиц глаза расположены по бокам головы - это расширяет общее поле зрения, но сужает бинокулярное. Зато птицы могут пользоваться глазами независимо. Подобно тому как мы можем взять одной рукой один предмет, а другой рукой - другой и манипулировать ими по отдельности, чайка, патрулирующая водоем, может левым глазом следить за соседкой слева, а правым - за соседкой справа, не забывая время от времени поглядывать вниз двумя глазами сразу. Общее поле зрения, складывающееся из монокулярных и бинокулярного, у чаек, воробьев и голубей немного более 300°, у кур - 320°, а у козодоя - 340°! Бинокулярное зрение - лишь частный случай зрительных восприятий птиц. У человека оно составляет 150°. Из птиц никто не может догнать его в этом. Даже у совы и козодоя оно всего 60°, у голубя - 25-30°, у воробья, снегиря, зяблика - 10-20°, а у кукушки его нет вообще. Своеобразно расположены глаза у лесного кулика вальдшнепа. Они большие, выпуклые и так смещены назад, что бинокулярное поле у них образуется не спереди, а сзади.

Когда вальдшнеп на кормежке втыкает клюв в землю, он прекрасно видит, что творится непосредственно сзади пего. У цапель бинокулярное поле смещено вниз под клюв. Это связано с их манерой затаиваться, подняв клюв вертикально вверх. Глаза при этом слегка поворачиваются вниз, и птица наблюдает за тем, что происходит перед ней, двумя глазами сразу. Использование бинокулярного зрения очень важно для точной оценки расстояния, восприятия глубины пространства и всех движений объектов в нем. Благодаря бинокулярному зрению ласточки, например, успешно ловят в воздухе мелких -насекомых, а сорокопут демонстрирует прицельные броски при охоте на юрких ящериц и мышат. В глазах этих птиц существует вторая боковая область острого зрения с ямкой. Все они охотятся за активной подвижной добычей. Кроме сорокопутов и ласточек, это ястребы, соколы, крачки, щурки, зимородки и некоторые другие. При поисковом полете они используют монокулярное зрение и центральную ямку сетчатки, при погоне и ловле добычи - бинокулярное зрение с фокусировкой на боковые ямки.

Существует большое количество разновидностей птиц, с глазами, развитыми лучше, чем у других живых существ того же размера. У хищных птиц глаз по объему может быть равным (сарыч) или гораздо большим (беркут), чем у человека. Вес тела человека при этом в 3000 раз больше, чем у беркута. У совы вес глаз равен третьей части веса головы птицы. Все птицы имеют прекрасное зрение. Небольшую птицу, например воробья, сапсан может увидеть на расстоянии больше километра.

Птицы для поиска добычи используют слух или зрение, поскольку некоторые из видов лишены обоняния. Гриф может заметить павшее животное в горах на дистанции в 2-3 километра. Голова у птиц может свободно повернуться на угол до 180, а у некоторых видов до 270 градусов. Больше других крутят головой совы. Глаза у сов неподвижны и в противоположность прочим птицам, смотрят вперёд. Именно поэтому природа снабдила сову широчайшим углом поворота головы, отсутствие необходимости разворачиваться всем телом позволяет ей отслеживать источники шума, оставляя корпус на месте и оставаться незаметной для потенциальных жертв.

А чем могут похвастаться прочие птицы? Глаза у большинства птиц расположены сбоку от головы, и при этом обладают кругозором в 300, а некоторые и в 360 градусов. И это – не поворачивая головы, и не меняя положения глаз. Стоит вспомнить, что человеческое зрение охватывает угол только 150 градусов. Но такой широкий угол зрения не всем птицам необходим. Например, хищникам – не нужен.

Глаза хищников устремлены вперед и угол зрения не слишком большой (160 градусов у пустельги), но значительно больше у хищников развита способность к бинокулярному зрению. При этом лучше других эта способность присуща совам. Хищникам проще обернуться к объекту сзади и рассмотреть его, а вот их добыча нуждается в широком кругозоре как в полете, так и во время кормежки и прочих ситуациях. Утка может заметить хищника не поворачивая голову.

У птиц существует и имеет важное значение направление наилучшей остроты зрения глаз. Оно определяется анатомией строения глаза и значительно отличается у разных видов птиц. Обычно, самым острым бывает восприятие у птиц вбок, благодаря чему птица в полете имеет две ясных картинки. Интересно сравнивать зрение стрижа и ласточки. При питании одинаковой пищей, их глаза устроены различно. Взгляд стрижа устремлен вперед, поскольку он летает очень быстро и не может развернуться на месте. А острое зрение ласточки, в основном, направлено вбок, она может заметить мошку в любом ракурсе, в тот же миг сделать разворот и настичь мелькнувшую пищу. Поэтому, когда пищи много, ласточка и стриж в равном положении, а когда мало, то стриж уже не может прокормиться.

Птицы редко смотрят наверх. Важнее им видеть происходящее на земле. Устройство глаз птицы отражает верность данного утверждения. Верхний сегмент сетчатки глаз птиц лучше видит (и видит землю), а нижний сегмент видит хуже. Некоторые птицы хорошо видят как в воздухе, так и в воде (крохаль, баклан). Это предполагает возможность аккомодации (изменение преломляющей силы оптической системы глаза). Баклан обладает способностью менять эту характеристику на 4050 диоптрий. А человек с хорошим зрением на 1415 диоптрий. Цвета птицы различают, иначе к чему бы им цветное оперение. Вот только остается открытым вопрос – видят ли они цвета также, как люди. Вопрос пока не имеет ответа.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама