THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Стремление к экономии энергии и реализации, по возможности, равномерного проведения технологических процессов в очистных сооружениях приводит к необходимости применения насосов с регулированием частоты вращения их рабочих колес. Однако при слишком малой частоте вращения возможно закупоривание как рабочего колеса, так и вертикальных трубопроводов, если не учитываются предельные значения скорости потока в сечении трубы. Расширение канализационных сетей требует перекачивания на большие расстояния сточных вод до ближайшей главной насосной станции или очистного сооружения. В напорных канализационных системах под большим давлением перекачиваются небольшие количества жидкости. Для исключения закупорок с небольшими геометрическими размерами проточной части требуются специальные технические решения. Необходимость сокращения затрат на техническое обслуживание все чаще приводит к отказу от применения сороудерживающих решеток, что предъявляет весьма высокие требования к канализационным насосам. Различные мероприятия по экономии воды и изменившиеся санитарно-гигиенические условия в цивилизованных промышленно развитых странах значительно повысили содержание твердых и волокнистых частиц в сточных водах и, соответственно, потребовали более высокую защиту насосов от закупоривания. Это означает, что доля воды в транспортирующей среде значительно уменьшилась относительно содержания волокнистых и твердых частиц. Особенно серьезной эта проблема становится после засушливых летних периодов. Волокна и твердые частицы могут осаждаться в коллекторах и сточных трубах и при последующем ливне смываться в виде комков на насосную станцию. В этом случае при неправильном выборе геометрической формы рабочего колеса возникает опасность закупоривания насосов. Различают два типа закупоривания:
твердыми предметами − нередко в насосы попадают твердые предметы: древесные отходы, игрушки или другие бытовые отходы. Примерно такие же твердые образования могут возникать в результате конгломерации мелких твердых частиц в крупные образования;
волокнами − образующимися, прежде всего, из бытовых отходов, предметов гигиены и промышленных отходов любого рода. Они скапливаются в зазоре между рабочим колесом и корпусом у входной части диска рабочего колеса или во всасывающем отверстии рабочего колеса.

На рис. 1 показано сечение типичной проточной части канализационного насоса. При сильном абразивном износе щелевого кольца корпуса увеличиваются утечки с напорной стороны в сторону всасывания, что приводит к проникновению волокон в зазор между корпусом и рабочим колесом. В экстремальных случаях эти скопления волокон в зазоре могут привести к торможению рабочего колеса. Нередко волокна кратковременно отлагаются на входной кромке рабочего колеса. При правильной геометрической форме входной кромки эти волокна вскоре смываются с рабочего колеса и выносятся из насоса. Если же форма входной кромки другая, то скопления волокон могут привести к полной закупорке всасывающего отверстия. Даже современные насосы могут оказаться ненадежными при неправильно выбранной геометрической форме рабочего колеса, не соответствующей конкретному случаю применения или специфическому составу сточных вод. Геометрические формы рабочих колес канализационных насосов представлены на рис. 2.


Нередко состав коммунальных сточных вод заранее не известен и может измениться после подключения к канализационной сети нового пользователя. Сточные воды подразделяются на дождевую воду, загрязненную воду и шлам. Для перекачивания шламов с содержанием сухого остатка более 5% на очистных сооружениях в настоящее время применяются преимущественно объемные, например эксцентриковые шнековые насосы. Центробежные насосы используются, как правило, для перекачивания загрязненных вод − коммунальных, бытовых и промышленных, а также сельскохозяйственных. Однако для этих видов сточных вод точно не определены измеряемые параметры. Они различаются разным содержанием газа, волокон, сухой субстанции и песка. Поэтому условия перекачивания сточных вод должны тщательно анализироваться для каждого отдельного случая. Общие указания или универсальные рекомендации возможны лишь в ограниченной степени. В табл. 1 приведены основные параметры перекачиваемых сточных вод и шламов.


На рис. 3 представлены значения КПД различных типов рабочих колес для одного расчетного режима. Видно, что между открытыми и закрытыми однолопастными рабочими колесами, так же как между открытыми и закрытыми двухканальными рабочими колесами различия несущественны (3−5%). Применение двухканальных рабочих колес дает незначительное увеличение КПД − порядка 2%. Для определения максимально достижимого КПД были проведены всесторонние сравнения известных проточных частей канализационных насосов. Диаграммы на рис. 4 показывают наилучшие значения КПД насосов наиболее часто применяемых типоразмеров с условным проходом DN 80, DN 100 и DN 150. У насосов со свободновихревыми рабочими колесами при всех типоразмерах максимально достижимый КПД составляет 55%. Значения КПД однолопастных и двухканальных рабочих колес закрытого или открытого типа находятся в диапазоне от 75 до 85%. Только при относительно высокой быстроходности и сравнительно больших расходах (типоразмер DN 150), с открытым однолопастным рабочим колесом можно достичь повышения КПД на 3%. Путем направленной гидравлической оптимизации закрытого двухканального рабочего колеса удалось получить очень высокий КПД − более 80%. КПД закрытых двухканальных рабочих колес имеют те же значения, что и у многоканального рабочего колеса. КПД открытых двухканальных рабочих колес, например, рабочего колеса типа N одного из шведских производителей, почти на 5% ниже, чем того же колеса в закрытом исполнении. Очевидно, что потери в щели между корпусом и лопастями рабочего колеса и в специально устроенном пазу для отклонения волокон значительно выше, чем потери в диске и щелевом уплотнении закрытого колеса.




Столь же важным, как КПД в оптимальной точке характеристики, является КПД в диапазоне неполных нагрузок. Здесь можно обнаружить существенное влияние геометрической формы рабочего колеса. Для детального анализа на рис. 5 показан характер изменения КПД в зависимости от подачи для рабочих колес различной геометрической формы. Зависимости η = f(Q) построены в относительных единицах по отношению к подаче Q/Qопт = 1. Свободновихревое рабочее колесо имеет в широком диапазоне подачи насоса постоянный, но небольшой КПД. Низкий КПД обусловлен гидродинамическими условиями и может быть улучшен лишь в узких пределах. Многоканальные рабочие колеса благодаря большему числу лопастей наиболее эффективно преобразуют энергию во всем диапазоне нагрузок, но они пригодны для перекачивания только предварительно очищенных сточных вод. Рабочие колеса закрытого типа отличаются более плоской кривой КПД и, таким образом, более высоким КПД в режиме неполных нагрузок, чем рабочие колеса открытого типа. Например, в диапазоне неполных нагрузок КПД закрытого одноканального рабочего колеса может отличаться от КПД открытого одноканального рабочего колеса на 10%, хотя в оптимальной точке характеристики их КПД одинаков. Это положение справедливо также и для двухканальных рабочих колес. Поэтому при оценке энергетических параметров насосов необходимо учитывать не только КПД в оптимальной точке характеристики, но и КПД в режимах неполных нагрузок, в которых канализационные насосы работают очень часто.

В течение эксплуатационного периода происходит изменение КПД и зависимости P = f(Q). Это обстоятельство следует обязательно учитывать при проектировании насосной станции для перекачки сточных вод. На рис. 6 показано влияние износа щелевого зазора на рабочие характеристики открытого однолопастного рабочего колеса. Хорошо видно, что снижение КПД в оптимальной точке характеристики может достигать до 10%. По мере абразивного износа изменяется и напорная характеристика насоса. Для приведенной на рис. 6 характеристики сети примерно на 8% уменьшается подача. Однако этот эффект не заметен при повседневной работе , так как в общем случае расходомеры не устанавливаются, а количество потребляемой энергии остается примерно постоянным из-за уменьшения подачи. На рис. 7 показано, как непрерывно снижается величина КПД в зависимости от увеличения зазора. Хорошо видно, что у рабочего колеса открытого типа, например типа N, КПД снижается значительно быстрее, чем у колеса закрытого типа.


Важным критерием оценки вероятности закупоривания рабочих колес насосов является свободный проход, опре- деляемый диаметром шара, который может пройти через рабочее колесо. На рис. 8 показано сравнение максимального свободного прохода различных рабочих колес. Свободный проход зависит от типоразмера и числа лопастей рабочего колеса. Требуемые потребителями для перекачки неочищенных сточных вод свободные проходы минимум 80 мм или даже 100 мм могут быть обеспечены только определенными типами рабочих колес. Как свободновихревые, так и однолопастные рабочие колеса имеют относительно большие свободные проходы и в течение многих лет оправдывают себя при перекачивании неочищенных сточных вод с крупными твердыми частицами. Для открытых однолопастных рабочих колес характерны несколько меньшие свободные проходы, но все же при всех типоразмерах не менее 75 мм. При DN 150 свободный проход составляет даже 100 мм. У закрытых двухканальных рабочих колес свободный проход находится на том же уровне, что и у открытых однолопастных. Однако открытые двухканальные и многоканальные рабочие колеса имеют более узкий, зависимый от конструкции, свободный проход и поэтому не могут обеспечить работу без закупорки в присутствии крупных твердых примесей. У двухканальных рабочих колес свободный проход ограничен. Это относится также и к рабочему колесу типа N. Только при специальном оформлении в виде так называемого колеса горшкового типа закрытое двухканальное рабочее колесо может иметь свободный проход более 75 мм при DN 80 и DN 100 и более 100 мм начиная с DN 150. Для обеспечения надежного перекачивания неочищенных сточных вод и надежной работы насосов свободный проход должен быть не менее 100 мм. Такое требование содержится в новых нормативах по выбору канализационных насосов ATV-134 немецкого объединения специалистов по очистке сточных вод.


При выборе канализационных насосов все более важным критерием становятся издержки за срок их службы. При работе в периодическом режиме, характерном для канализационных насосных станций, стоимость энергии составляет около 50% затрат за срок службы. При непрерывном режиме, в котором часто работает водоприемная станция очистного сооружения, расходы на энергию превышают 80% общих затрат. Это положение справедливо, естественно, только для безотказной работы канализационного насоса и без его закупорок. При закупорках насоса (рис. 9) прямые расходы, связанные с устранением неполадки, и косвенные затраты из-за простоя насоса являются решающим фактором издержек. Эти затраты могут превысить стоимость насоса. По этой причине владельцы канализационных насосных станций придают первоочередное значение эксплуатационной надежности и лишь во вторую очередь − коэффициенту полезного действия. Выбор рабочего колеса насоса всегда означает компромисс между вероятностью закупорки насоса, КПД в рабочей зоне и характеристикой износа. Выбирать форму рабочего колеса можно только с учетом специфического состава сточных вод. Поэтому не может быть универсального рабочего колеса, как это пропагандируется одним из крупных шведских производителей насосов.

Некоторые рекомендации по выбору оптимальной формы рабочего колеса приводятся в табл. 2. При высоком содержании газовых включений свободновихревое рабочее колесо, как и прежде, является наилучшим решением. При высоком содержании волокнистых веществ получены хорошие результаты с открытыми однолопастным и двухканальными рабочими колесами. При среднем содержании волокон, характерном для коммунальных сточных вод, предпочтение отдается закрытым однолопастным и двухканальным рабочим колесам вследствие их высокой эксплуатационной надежности. При экстремальной загрязненности промышленными отходами или бытовым мусором применяется свободновихревое рабочее колесо, несмотря на неудовлетворительную эффективность использования энергии. Это в особой мере относится к небольшим типоразмерам − DN 80 и DN 100.


Это было подтверждено многочисленными экспериментами с различными видами и концентрациями волокнистых материалов на испытательном стенде фирмы KSB, моделирующем условия перекачивания сточных вод. Очевидный вывод, который можно сделать - для экономичной транспортировки сточных вод необходимо выбирать геометрические формы рабочих колес канализационных насосов строго в соответствии с составом и характеристиками перекачиваемой среды.

Существует много задач по перекачиванию различных жидкостей, например: чистая вода, дренажные сточные воды, фекальные воды, воды с большим содержанием примесей небольшого размера (1-3 мм), шламовые воды с большим содержанием крупных частиц (до 20-30 мм), воды с содержанием длинноволокнистых включений, жидкости с большим содержанием абразива, различные нефтепродукты, химически активные жидкости.И для решения каждой задачи существует своё оптимальное решение, а именно рабочее колесо определенного вида, позволяющее работать насосу с максимальным КПД. По форм-фактору центробежные рабочие колёса делятся на 2 группы: рабочие колёса открытого типа и рабочие колёса закрытого типа. И каждые, в свою очередь, могут иметь различное количество лопастей. Рабочие колёса закрытого типа в погружных насосах
В погружных дренажных и фекальных насосах колёса закрытого типа отличаются от аналогичных колес в центробежных горизонтальных поверхностных насосах для чистых жидкостей.В погружных насосах используются колёса закрытого типа с большим свободным проходом, чтобы колесо не забивалось крупными частицами (например, фекальными массами и т.п.). В консольных наружных насосах для чистых жидкостей используются закрытые колёса с небольшим свободным проходом, т.к. они обладают максимально возможным КПД и напором, что важно например для водоснабжения.

Рабочее колесо насоса. Материал и конструкция крыльчатки.

Ведущую роль среди деталей насосов занимает рабочее колесо. Рабочее колесо центробежного насоса является важнейшим элементом конструкции. Его основное назначение состоит в передаче энергии от вращающегося вала к жидкости.

Проточная часть рабочего колеса центробежного насоса определяется гидродинамическим расчетом. Рабочее колесо насоса подвержено действию значительных сил реакции потока, действию центробежных сил и в случае посадки на вал с натягом – действию сил в месте посадки.

Крыльчатка насоса - это совокупность лопастей, расположенных по окружности рабочего колеса. Эти лопасти представляют собой пластины, изогнутые в противоположном водотоку направлении. Расположение, геометрия и направление крыльчатки определяет рабочие характеристики насоса. Все эти параметры определяются расчетом на этапе проектирования насоса.

Рабочее колесо и крыльчатка центробежного насоса являются одними из важнейших элементов устройства насоса .

Принцип работы

При работе насоса колесом создается центробежная сила, которая буквально выталкивает жидкость из рабочей камеры насоса в трубопровод.

Если рассматривать принцип работы более подробно, то цикл будет выглядеть следующим образом.
1 В начале цикла рабочая камера насоса заполнена жидкостью(перекачиваемой средой).
2 С началом вращения вала насоса после пуска электродвигателя, начинает вращаться рабочее колесо, закрепленное на валу.
3 С рабочей полости создается давление, обусловленное появление центробежной силы.
4 Под действием центробежной силы жидкость перемещается от центра колеса к стенкам камеры
5 Увеличивающееся давление выталкивает жидкость в нагнетательный канал трубопровода
6 В центре крыльчатки насоса давление падает, что способствует всасыванию новой порции жидкости в рабочую камеру.

Центробежное рабочее колесо такого типа широко применяются в конструкции поверхностного насоса , теплового насоса и насоса для повышения давления .

Типы рабочих колес

По конструктивному исполнению рабочие колеса насосов бываю закрытые – с покрывным диском, открытые и колеса двустороннего входа.

Открытое рабочее колесо

Отрытые колеса в подавляющем большинстве – литые. Рабочие колеса отливаются в специальную форму, методами точного литья. В этом случае колеса получаются с проточной частью высокой точности и чистоты поверхности.

Рабочее колес отрытого типа применяют для перекачивания загрязненных и/или густых жидкостей. Конструкция такого колеса несет в себе как плюсы, а именно:
большой срок эксплуатации и высокий уровень износостойкости
способность эффективно очищаться от разного рода засорений

Так и минусы – сравнительно невысокий КПД (коэффициент полезного действия), в среднем около 40%.

Закрытое рабочее колесо насоса

В закрытом рабочем колесе к основному диску с отлитыми или профрезерованными лопастями подгоняют и приваривают покрывающий диск.

Конструкция закрытого типа характеризуется высоким значением КПД, что делает насосы с колесами такого типа очень востребованными.

Насосы, оборудованные колесами данного типа, применяются как для перекачивания чистых жидкостей, так и незначительно загрязненных сред.

Рабочие колеса двустороннего входа представляют собой попарно соединенные рабочие колеса одностороннего входа с одинаковой формой проточной части. Такие колеса могут быть цельными (литыми) или состоящими из двух половин (сварно-литыми).

По силовому взаимодействию лопатки рабочего колеса с обтекающим её потоком они делятся на осевые и радиальные. Различие этих типов заключается в направлении течения.

Радиальное рабочее колесо

В насосах, где установлено радиальное рабочее колесо, поток жидкости имеет радиальное направлении и поэтому создается условия для работы центробежных сил.

Работа насоса выглядит следующим образом: при вращении радиального рабочего колеса(2) внутри корпуса(1) в потоке жидкости возникает разность давлений по обе стороны каждой лопатки, и следовательно силовое взаимодействие потока с крыльчаткой. Силы давление лопаток на поток создают вынужденное вращательное и поступательное движение жидкости, увеличивая её давление и скорость, т.е. механическую энергию.

Удельное приращение энергии потока жидкости в этом случае зависит от сочетания скоростей протекания потока, скорости вращения крыльчатки водяного насоса, диаметра рабочего колеса и его формы, т.е. от сочетания конструкции размеров и числа оборотов.

Осевое рабочее колесо

В насосах, где установлено осевое рабочее колесо, поток жидкости параллелен оси вращения лопастного насоса. Принцип действия центробежного агрегата похож на предыдущий вариант и основан на передаче энергии от лопасти к потоку жидкости.

Влияние монтажа насоса на рабочее колесо.

Способ монтажа насоса непосредственно влияет на сроки безотказной работы насоса, и на его ресурс в целом. Подробнее о всех нюансах монтажа описано в статье о напоре насоса . Вкратце на срок службы рабочего колеса влияет:
диаметр всасывающего участка трубопровода меньше диаметра всасывающего патрубка насоса
уклон в сторону от всаса насоса или провисание горизонтального участка трубопровода со стороны всаса
большое число поворотов и изгибов трубопровода.

Диаметр и расчет рабочего колеса

Расчет ведется по заданным значениям подачи Q, напора Н и числа оборотов n с целью определения проточной части, диаметра и размеров рабочего колеса.

Расчет остальных элементов проточной части насоса – подвода и отвода потока - выполняется с целью обеспечить условия, принятые при предыдущем расчете.

Задание для расчета рабочего колеса определяется по данным для насоса в целом на основании принятой схемы насоса.

Подача колеса

где К – число потоков в насосе

Напор колеса

где i – число ступеней в насосе(если колес несколько).

В расчете необходимо учитывать потери. Расчетная подача Q будет больше Q1 на величину объемных потерь, величина которых определяется объемным КПД. Величина объемного КПД обычно находится в пределах 0,85 – 0,95, причем большие значения относятся к насосам с большим коэффициентом быстроходности.

Аналогично дела обстоят и для напора. Гидравлические потери определяются гидравлическим КПД, который зависит от совершенства формы проточной части насоса, качества её выполнения и размеров агрегата. Значение гидравлического КПД находится в пределах 0,85-0,95.

При определении диаметра рабочего колеса и выполнении расчета вначале определяют основные размеры канала и угла лопаток на входе и выходе, а затем профилируют канал в меридианном сечении и контур лопаток.

Работы с выполнение расчета относятся к высокоточным, ведь от этого зависит рабочая характеристика и каждая ошибка несет за собой большие финансовые потери при серийном изготовлении. Поэтому такие работы выполняются только силами профильных расчетных организаций

Крыльчатка для насоса и причины разрушения

Кавитация

Кавитация возникает в результате местного снижения давления в жидкости. Процесс кавитации представляет собой парообразование с последующим схлопыванием пузырьков пара с одновременным конденсированием пара в потоке жидкости. В результате этих многочисленных всхлопываний – микроскопических взрывов, возникают скачки давления, которые могут повредить рабочее колесо насоса и даже привести в поломке всей гидравлической системы.

Характерным признаком кавитации является повышенный шум при эксплуатации насосного агрегата.

Сухой ход

Сухой ход характеризуется работой насоса при отсутствии жидкости на входе. При работе без движения жидкости, из-за трения и отсутствия охлаждения происходит нагрев и закипание жидкости в рабочей камере насоса. Такие явления приводят к деформации рабочего колеса, а затем к его полному разрушению

Коррозия металла

Коррозия металлов в воде или водных растворах имеет электрохимический характер. Этот процесс возникает из-за разности потенциалов, т.е. при наличие так называемой гальванической пары.

Возникновение гальванической пары происходит при погружении двух или нескольких различных металлов (макропары) или при наличии структурной неоднородности металла (микропары).

Разные составляющие как в микропарах, так и в макропарах имеют разные электродные потенциалы, вследствие чего возникает электрический ток. Составляющие, имеющие более положительный потенциал, называют катодами, более отрицательный – анодами.

Разрушение металла рабочего колеса насоса происходит на анодных участках из-за перехода ионов(электрически заряженных частиц) из металла в рабочую среду насоса. Освободившиеся электроны перетекают по металлу от анодных к катодным участкам и разряжаются на них.

Таким образом коррозия – это совокупность двух процессов: анодный процесс (переход ионов из металла в раствор) и катодный процесс (разрядка электронов).

Материалы рабочих колес насосов

При выборе материалов рабочих колес необходимо придерживаться ряда требований. Механические свойства материала должны обеспечивать требуемую прочность рабочего колеса с учетом температурных напряжений. Коэффициент линейного расширения не должен сильно отличаться от коэффициента линейного расширения материала вала.

Не менее важной характеристикой является стойкость материала против коррозии в перекачиваемой жидкости.

В общем, получается, что материал рабочего колеса центробежного насоса должен отвечать сложному сочетанию требований.

Механические свойства материала должны обеспечивать прочность колеса не только в условиях нормальной эксплуатации, но и при специальных режимах работы, связанных с температурными толчками.

В некоторых случаях возможно попадание посторонних тел в насос, которые могут нанести ущерб рабочему колесу, например, привести к образованию вмятин. Поэтому материал колеса должен быть прочен, пластичен и обеспечивать высокую коррозионную стойкость.

Наиболее всего этим требованиям удовлетворяет бронза, но бронза вместе с тем является и самым дорогим материалом. Кроме того в условиях высоких температур механические свойства бронзы резко снижаются. Возникают неудобства связанные с высоким коэффициентом линейного расширения бронзового колеса по сравнению со стальным валом. В результате посадка бронзового рабочего колеса на вал в условиях нормальной температуры, ослабевает в рабочих условиях при большой температуре.

Хорошими механическими свойствами и коррозионной стойкостью обладают нержавеющие стали. Но вследствие низких литейных качеств, колеса из таких сталей приходится изготавливать сварным способом из механически обработанных поковок.

В качестве материала для рабочего колеса насоса, работающего в низко-коррозионной среде, может быть использован чугун.

В последнее время в конструкции крыльчатки насоса набирают популярность различные виды пластмасс, имеющие относительно высокие механические свойства и стойкость к воздействию агрессивных сред.

В больших насосах в благоприятных от коррозии условиях, рабочие колеса выполняют из углеродистой стали, а места подверженные усиленному износу защищают специальными наплавками.

Ремонт и замена крыльчатки для насосов (видеоинструкция)

Если насосное оборудование выходит из строя, то одной из причин является рабочее колесо и тогда необходима замена крыльчатки насоса.

Если у Вас возник вопрос о том как снять крыльчатку насоса, воспользуйтесь предлагаемой ниже инструкцией:

1 Убедитесь в отсутствии питания насосного агрегата;

2 Для негерметичных насосов необходимо разъединить муфту, которая соединяет насос и электродвигатель;

3 В зависимости от конструкции агрегата (при необходимости) отсоедините всасывающую и/или напорную трубы;

4 Снять корпус насоса открутив соответствующие болты;

5 Выбить шпонку, соединяющую вал и рабочее колесо;

6 Снять рабочее колесо.

Посадочные места колеса на вал двигателя может быть выполнено в крестообразном или шестигранном исполнении или в форме шестигранной звезды.

Рабочее колесо центробежного насоса является основной деталью устройства. Это элемент, который преобразует энергию вращения, в давление в корпусе, где перекачивается жидкость.
Какая роль рабочего колеса в центробежном насосе, как правильно его рассчитать и заменить в устройстве своими руками предлагает познакомиться эта статья.

Как работает центробежный насос

Внутри корпуса насоса, имеющего форму спирали, на валу жестко крепится рабочее колесо, состоящее из двух дисков:

  • Заднего.
  • Переднего.
  • Лопастей, между дисками.

От радиального направления лопасти отогнуты в противоположную от вращения колеса сторону. Корпус насоса, с помощью патрубков, соединяется с напорным и всасывающим трубопроводами.
При полном наполнении жидкостью корпуса насоса из всасывающего трубопровода, при вращении рабочего колеса от электродвигателя, жидкость, находящаяся между лопастями, в каналах рабочего колеса, от центра, под действием на нее центробежной силы, отбрасывается к периферии. В этом случае создается разрежение в центральной части колеса, а на периферии давление повышается.
При повышении давления жидкость начнет из насоса поступать в напорный трубопровод. Это вызовет образование разрежения внутри корпуса.
Под его действием жидкость начнет одновременно поступать из всасывающего трубопровода в насос. Так жидкость непрерывно подается в напорный трубопровод из всасывающего.
Центробежные насосы бывают:

  • Одноступенчатые, у который одно рабочее колесо.
  • Многоступенчатые, имеют несколько рабочих колес.

При этом принцип работы во всех случаях одинаков. Жидкость, под действием на нее центробежной силы, развивающейся за счет вращающегося рабочего колеса, начинает движение.

Как классифицируются центробежные насосы

Инструкция по классификации центробежных насосов включает:

  • Количество ступеней или рабочих колес:
  1. одноступенчатые насосы;
  2. многоступенчатые, с несколькими колесами.
  • Расположение оси колес в пространстве:
  1. горизонтальное;
  2. вертикальное.
  • Давление:
  1. низкое давление, до 0,2 МПа;
  2. среднее, от 0,2 до 0,6 МПа;
  3. высокое, более 0,6 МПа.
  • Способ подвода жидкости к рабочему элементу:
  1. с односторонним входом;
  2. двухсторонним входом или двойным всасыванием;
  3. закрытые;
  4. полузакрытые.
  • Способ разъема корпуса:
  1. горизонтальный;
  2. вертикальный разъем.
  1. спиральный. Здесь жидкость сразу отводится в спиральный канал;
  2. лопаточный. В этом случае жидкость проходит сначала через специальное устройство, которое называется направляющим аппаратом и представляет собой неподвижное колесо с лопатками.
  • Коэффициент быстроходности:
  1. тихоходные насосы;
  2. нормальные;
  3. быстроходные.
  • Функциональное назначение:
  1. для водопроводов;
  2. канализации;
  3. щелочные;
  4. нефтяные;
  5. терморегулирующие и многие другие.
  • Способ соединения с двигателем:
  1. приводные, в системе имеются редуктор или шкив;
  2. соединение с электродвигателем при помощи муфты.
  • КПД насоса.
  • Способ расположения насоса по отношению к поверхности воды:
  1. поверхностные;
  2. глубинные;
  3. погружные.

Особенности рабочего колеса устройства

Совет: Своевременная замена изношенного рабочего колеса, увеличит срок эксплуатации центробежного насоса.


Рабочее колесо преобразует энергию вращения вала в давление, которое создается внутри корпуса устройства, где перекачивается жидкость. Гидродинамический расчет рабочего колеса центробежного насоса по заданным требованиям производится для определения размера проточной или внутренней и внешней части колеса, формы и количество лопаток.
Подробно как выполняется расчет элемента можно узнать на видео в этой статье.

Форма колеса и его конструктивные размеры обеспечивают элементу необходимую механическую прочность и технологичность изготовления:

  • Возможность получить качественную отливку.
  • Обеспечить дальнейшее соблюдение техпроцесса механической обработки.

При выборе материала к нему должны предъявляться такие требования:

  • Стойкость к действию коррозии.
  • Химическая стойкость к воздействию элементов прокачиваемой жидкости.
  • Стойкость к требуемому режиму работы устройства.
  • Длительный срок эксплуатации, согласно паспортным характеристикам.

Чаще всего для изготовления рабочего колеса берется чугун марок СЧ20 – СЧ40.
При работе с вредными химическими веществами и коррозионно-агрессивными средами, рабочее колесо и корпус центробежного насоса изготавливаются из нержавеющей стали. Для работы устройства в напряженных режимах, которые включают: длительный срок включения; жидкость для перекачивания содержит механические примеси; высокий напор, для изготовления колес берется хромистый чугун ИЧХ, как показано на фото.

Как выполнить обточку рабочего колеса

При эксплуатации, иногда, приходится к конкретным условиям приспосабливать характеристики насосов. В этом случае лучше всего уменьшить наружный диаметр D 2 колеса сделав его подрезку. (рис. 1) .

Рис. 1. Схемы доработки рабочего колеса устройства
а) центробежного
б) осевого
При подрезке рабочих элементов центробежных насосов перемену параметров насоса приближенно можно рассчитать по уравнениям подобия:

  • где Q — номинальные подача;
  • H – напор;
  • N – мощность;
  • D 2 — наружный диаметр (до обрезки колеса);
  • Q’, H’, N’, D’ 2 те же обозначения, после обрезки.

На рис. 2 указаны рабочие размеры колеса после окончания его обточки. Как видно, после этого процесса существенно расширяется подача и напор для насосов этого типа.

На КПД практически не сказывается уменьшение диаметра от первоначального на 10…15 % для устройств с n s = 60…120. При более повышении n s снижение КПД будет существенным, что видно по рис. 3.

Как изменяются параметры при подрезке элемента для осевых насосов можно рассчитать по формулам:

  • где Q — номинальные подача;
  • H – напор;
  • D 2 — наружный диаметр элемента;
  • d — диаметр втулки (до обрезки колеса);
  • Q’, H’, D’ 2 — те же обозначения, после обрезки.

Подачу осевого насоса уменьшить можно и заменой рабочего колеса другим, с теми же лопатками и большим диаметром втулки. В этом случае напорная характеристика насоса пересчитывается по формулам: где d’ — больший диаметр втулки.
У центробежных насосов(см.

Рис. 5. Схема изменения лопаток рабочего колеса насоса

Совет: При выполнении таких операций цена центробежного насоса будет значительно снижена, чем при покупке нового устройства.

Использование центробежных насосов в исправном состоянии увеличивает их срок эксплуатации, что значительно снижает затраты при перекачке жидкости.

2.1. Устройство рабочего колеса

На рисунке 4 приведен продольный разрез (вдоль оси вала) рабочего колеса центробежного насоса. Межлопастные каналы колеса образуются двумя фасонными дисками 1, 2 и несколькими лопастями 3. Диск 2 называется основным (ведущим) и составляет одно единое целое со ступицей 4. Ступица служит для жесткой посадки колеса на вал 5 насоса. Диск 1 называется покрывающим или передним. Он составляет единое целое с лопастями в насосах.

Рабочее колесо характеризуется следующими геометрическими параметрами: диаметром входа D 0 потока жидкости в колесо, диаметрами входаD 1 и выходаD 2 с лопатки, диаметрами валаd в и ступицыd ст , длиной ступицыl ст , шириной лопатки на входеb 1 и выходеb 2 .

d стd в

l ст

Рисунок 4

2.2. Кинематика потока жидкости в колесе. Треугольники скоростей

Жидкость подводится к рабочему колесу в осевом направлении. Каждая частица жидкости движется с абсолютной скоростью с .

Попав в межлопастное пространство, частицы принимают участие в сложном движении.

Движение частицы, вращающейся вместе с колесом, характеризуется вектором окружной (переносной) скорости u . Эта скорость направлена по касательной к окружности вращения либо перпендикулярно к радиусу вращения.

Частицы перемещаются также относительно колеса, и это движение характеризуется вектором относительной скорости w , направленной по касательной к поверхности лопатки. Эта скорость характеризует движение жидкости относительно лопатки.

Абсолютная скорость движения частиц жидкости равна геометрической сумме векторов окружной и относительнойr скоростей

c = w+ u.

Эти три скорости образуют треугольники скоростей, которые можно построить в любом месте межлопастного канала.

Для рассмотрения кинематики потока жидкости в рабочем колесе принято строить треугольники скоростей на входной и выходной кромках лопатки. На рисунке 5 приведен поперечный разрез колеса насоса, на котором построены треугольники скоростей на входе и выходе межлопастных каналов.

w 2β 2

Рисунок 5

В треугольниках скоростей угол α – это угол между векторами абсолютной и окружной скоростей, β – угол между вектором относительной и обратным продолжением вектора окружной скорости. Углы β1 и β2 называются углами входа и выхода с лопатки.

Окружная скорость жидкости равна

u = π 60 Dn,

где n – частота вращения рабочего колеса, об/мин.

Для описания потока жидкости используются также проекции скоростей с u ис r . Проекцияс u – это проекция абсолютной скорости на направление окружной скорости,с r – проекция абсолютной скорости на направление радиуса (меридиональная скорость).

Из треугольников скоростей следует

с1 u = с1 cos α 1 ,

с2 u = с2 cos α 2 ,

с 1r= с 1sin α 1,

с 2r= с 2sin α 2.

Треугольники скоростей удобнее строить вне рабочего колеса. Для этого выбирается система координат, в которой вертикальное направление совпадает с направлением радиуса, а горизонтальное – с направлением окружной скорости. Тогда в выбранной системе координат треугольники входа (а) и выхода (б) имеют вид, показанный на рисунке 6.

с 2r

Рисунок 6

Треугольники скоростей позволяют определить величины скоростей и проекций скоростей, необходимых для расчета теоретического напора жидкости на выходе колеса нагнетателя

H т = u2 c2 u g − u1 c1 u .

Данное выражение называется уравнением Эйлера. Действительный напор определяется выражением

Н = µ ηг Н т ,

где µ – коэффициент, учитывающий конечное число лопастей, ηг – гидравлический КПД. В приближенных расчетах µ ≈ 0,9. Более точное его значение рассчитывается по формуле Стодолы.

2.3. Типы рабочих колес

Конструкция рабочего колеса определяется коэффициентом быстроходности n s , который является критерием подобия для нагнетательных устройств и равен

n Q n s = 3,65 H 3 4 .

В зависимости от величины коэффициента быстроходности рабочие колеса разделяют на пять основных типов, которые показаны на рисунке 7. Каждому из приведенного типа колеса соответствуют определенные форма колеса и соотношение D 2 /D 0 . При малыхQ и большихH , соответствующих малым значениямn s , колеса имеют узкую проточную полость и самое большое отношениеD 2 /D 0 . С увеличениемQ и уменьшениемH (n s возрастает) пропускная способность колеса должна расти, и поэтому его ширина увеличивается. Коэффициенты быстроходности и соотношенияD 2 /D 0 для различных типов колес приведены в табл. 3.

Рисунок 7

Таблица 3

Коэффициенты быстроходности и соотношения D 2 /D 0 для колес

различной быстроходности

Тип колеса

Коэффициент бы-

Соотношение D 2 /D 0

строходности n s

Тихоходное

40÷ 80

Нормальной

80÷ 150

быстроходности

Быстроходное

150÷ 300

1,8 ÷ 1,4

Диагональное

300÷ 500

1,2 ÷ 1,1

500 ÷ 1500

2.4. Упрощенный способ расчета рабочего колеса центробежного насоса

Заданы производительность насоса, давления на поверхностях всасываемой и нагнетаемой жидкости, параметры подключенных к насосу трубопроводов. Задача состоит в расчете колеса центробежного насоса, и включает в себя расчет основных его геометрических размеров и скоростей в проточной полости. Необходимо также определить предельную высоту всасывания, обеспечивающую бескавитационный режим работы насоса.

Начинается расчет с выбора конструктивного типа насоса. Для подбора насоса необходимо рассчитать его напор Н . По известнымН иQ , используя полные индивидуальные либо универсальные характеристики, приведенные в каталогах или литературных источниках (например , подбирается насос. Выбирается частота вращенияn вала насоса.

Для определения конструктивного типа рабочего колеса насоса рассчитывается коэффициент быстроходности n s .

Определяется полный КПД насоса η =η м η г η о . Механический КПД принимается в пределах 0,92-0,96. У современных насосов значенияη о лежат в пределах 0,85-0,98, аη г – в пределах 0,8- 0,96.

Коэффициент полезного действия η о можно рассчитать по ориентировочному выражению

d в = 3 М (0,2 τ доп ) ,

η0 =

1 + аn − 0.66

Для расчета гидравлического КПД можно использовать фор-

ηг =1 −

(lnD

− 0,172) 2

где D 1п – приведенный диаметр на входе, соответствующий живому

рабочее колесо и

определяемый выражением

D 2 − d

D 0 иd ст – соответственно диаметр входа жид-

кости в рабочее колесо и диаметр ступицы колеса. Приведенный диаметр связан с подачей Q иn соотношениемD 1п = 4,25 3 Q n .

Потребляемая мощность насоса равна N в = ρ QgH η . Она связана с крутящим моментом, действующим на вал, соотношениемM = 9,6 N в / n . В данном выражении единицы измеренияn –

На вал насоса в основном действует скручивающее усилие, обусловленное моментом М, а также поперечные и центробежные силы. По условиям скручивания диаметр вала рассчитывается по формуле

где τ - напряжение кручения. Его величина может задаваться в диа-

пазоне от 1,2·107 до 2,0·107 Н/м2 .

Диаметр ступицы принимается равным d ст = (1,2÷ 1,4)d в , ее длина определяется из соотношенияl ст = (1÷ 1,5)d ст .

Диаметр входа в колесо насоса определяется по приведенному

диаметру D 0 = D 1п = D 1п + d ст (D 02 − d ст2 ) η о.

Угол входа находится из треугольника скоростей входа. Предполагая, что скорость входа потока жидкости в рабочее колесо равна скорости входа на лопатку, а также при условии радиального входа, т.е. с0 = с1 = с1 r , можно определить тангенс угла входа на лопатку

tg β1 =c 1 . u 1

С учетом угла атаки i угол лопасти на входеβ 1 л =β 1 + i . Потери

энергии в рабочем колесе зависят от угла атаки. Для отогнутых назад лопаток оптимальный угол атаки лежит в диапазоне от -3 ÷ +4o .

Ширина лопасти на входе определяется на основании закона сохранения массы

b 1 = πQ µ,

D 1c 1 1

где µ 1 – коэффициент стеснения входного сечения колеса кромками лопастей. В ориентировочных расчетах принимаетсяµ 1 ≈ 0,9.

При радиальном входе в межлопастные каналы (c1u = 0) из уравнения Эйлера для напора можно получить выражение для окружной скорости на выходе колеса

ctgβ

ctgβ



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама