THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Абрам Федорович Иоффе родился 29 октября 1880 года в городе Ромны Полтавской губернии в семье купца второй гильдии Файвиша (Фёдора Васильевича) Иоффе и домохозяйки Рашели Абрамовны Вайнштейн. Среднее образование получает в реальном училище (1889—1897), там он познакомился со Степаном Тимошенко - отцом механики сплошных сред, дружеские отношения с которым поддерживал и в зрелом возрасте.

В 1902 А. Ф. Иоффе окончил Санкт-Петербургский Технологический институт, в 1905 — Мюнхенский университет в Германии, где работал под руководством Рентгена и получил степень доктора философии.

С 1906 Абрам Федорович работал в Политехническом институте, в 1918 организовал Физико-механический факультет для подготовки инженеров-физиков. В 1911 Иоффе принял лютеранство для вступления в брак с нееврейкой.

В 1911 Иоффе определил заряд электрона, использовав ту же идею, что и Милликен: в электрическом и гравитационном полях уравновешивались заряженные частицы металла (в опыте Милликена — капельки масла). Однако эту работу Иоффе опубликовал в 1913 (Милликен опубликовал свой результат несколько раньше, поэтому в мировой литературе эксперимент получил его имя).



В 1913 году Абрам Федорович Иоффе защитил магистерскую и в 1915 докторскую диссертации по физике. С 1918 — член-корреспондент, а с 1920 — действительный член Российской академии наук.

В 1918 создаёт и возглавляет физико-технический отдел при Государственном рентгенологическом и радиологическом институте, являясь также Президентом этого института (директором был профессор Неменов). В 1921 Иоффе стал директором Физико-технического института АН СССР, созданного на основе отдела и названного теперь его именем. В 1919—1923 — председатель Научно-технического комитета петроградской промышленности, в 1924—1930 — председатель Всероссийской ассоциации физиков, с 1932 — директор Агрофизического института.

В здании Политехнического всегда по четвергам собирался семинар Иоффе. Начинали в 7, кончали в 11, так, чтобы успеть на последний трамвай, на знаменитый, прославленный во всех студенческих песнях "двадцать первый номер" от Лесного до города.

Участники семинара: Капица, Лукирский, Семенов, Френкель, Дорфман... тогда еще не академики, не профессора, а просто студенты и младшие преподаватели - обсуждали все самое интересное, что появлялось в науке.


Научный семинар Иоффе. После заседания сфотографировались: Френкель, Семенов, Ющенко, Иоффе, Шмидт, Бобр, Неструх, Добронравов. Капица стоит, рядом с ним Лукирский, Миловидова-Кирпичева и Дорфман, тот самый Яков Григорьевич Дорфман, который был студентом, потом юнкером, отказавшимся защищать Зимний дворец. Это ему в переполненном петроградском трамвае Иоффе говорил, что в физике тоже начинается революция.

Абрам Федорович Иоффе — один из инициаторов создания Дома учёных в Ленинграде (1934). В начале Отечественной войны он был назначен председателем Комиссии по военной технике, в 1942 — председателем военной и военно-инженерной комиссии при Ленинградском горкоме партии.

В 1944 А. Ф. Иоффе, в свою очередь, принял участие в судьбе Физического факультета МГУ. От его имени Молотову было написано письмо четырёх академиков, которое инициировало разрешение противостояния между так называемой «академической» и «университетской» физикой.

В декабре 1950, во время кампании по «борьбе с космополитизмом», Иоффе был снят с поста директора и выведен из состава Учёного совета института. В 1952 году возглавил лабораторию полупроводников АН СССР. В 1954 на основе лаборатории организован Институт полупроводников АН СССР.

Абрам Федорович Иоффе отличался способностью выбирать и привлекать к работе молодые таланты, а также умением пропагандировать науку среди читающей публики. Абрам Фёдорович увлекал собеседников мечтами о будущем техники. Некоторые её достижения, казавшиеся Иоффе легкими и выполнимыми, до сих пор во многом остаются мечтами, а кое-что сбылось неожиданно быстро для него.

Ниже приведены отрывки из беседы с А. Ф. Иоффе, опубликованной в № 5 "Вокруг света" за 1931 год.

"Путешествие в будущее"

Редактор: Каковы основные проблемы техники завтрашнего дня и техники отдаленного будущего?

А. Ф. Иоффе: Один из основных вопросов техники - это энергетика. С помощью каких источников энергии может человечество разрешить в будущем энергетическую проблему? Несомненно, что большую роль должна сыграть непрерывно поступающая к нам солнечная энергия... Сейчас свободной солнечной энергией можно считать только ту, которая падает на пустыни и на моря. Большая часть удобной земли используется для растительного сырья. Правильно ли это?

Для будущего неправильно. Растения, правда, используют солнечную энергию, но человеческая техника скоро перегонит в этом отношении живую природу. Растения используют 6 % падающей на них энергии солнечных лучей, между тем техника химическая и фотохимическая может использовать солнечную энергию в гораздо более высоких пределах - до 92-95 %. Это соотношение показывает, что растения вряд ли удержатся на Земле, когда наша техника достигнет соответствующих успехов.

Хлеб или искусственная пища

Надо думать, что основной продукт питания - хлеб - со временем будет играть роль вкусового вещества, вроде мандарина, то есть как один из элементов, вносящих разнообразие в пищу. Мы питаемся хлебом потому, что не умеем получать основную пищу искусственно, синтетическим путем. С другой стороны, плодородность почвы позволит чрезвычайно далеко пойти вперед. Площадь, занятая под культурой злаков, значительно сократится. Когда думаешь о проблеме солнечной энергии, то невольно сталкиваешься с той мыслью, что главную массу солнечной энергии берут поля.

Третье измерение

Редактор: Каковы пути воздушного транспорта?

А. Ф. Иоффе: Говоря о будущем, конечно, нельзя пройти мимо вопросов воздушного транспорта. Вся проблема летания связана с 1908 годом. С этого года человечество полетело, перешло из двух измерений в третье. Это произошло не потому, что были открыты какие-то новые принципы, но потому, что к 1908 году техника достигла определенного отношения веса машины к её мощности, дошла до такого предела, который дал возможность летать. Птица летает потому, что имеется определенное соотношение между ее весом и мощностью её крыльев. Самым легким двигателем является электродвигатель с достаточно легким источником электроэнергии. Если бы эта задача полностью была бы разрешена, то при помощи таких легких аккумуляторов все воздухоплавание было бы значительно шире использовано. Если бы гальванический элемент был заряжен солнцем или другим видом энергии, причем этот элемент оказался бы легче, чем свинцовый, так, чтобы вес аккумулятора плюс вес электродвигателя стал достаточно мал - то мы перешли бы на электроуправление, которое чрезвычайно облегчает все дело. Для отдаленного, даже не чрезмерно отдаленного будущего мне рисуется именно такое решение задачи. Тогда человек полетит как птица, чуть ли не сидя в кресле. Надо придумать очень мощный маленький аккумулятор, сравнительно легкий, и тогда человек может полететь прямо из окна или из двери.

На воздушных улицах

Редактор: Если будущее транспорта в воздухе, то, очевидно, он должен быть совершенно автоматизирован.

А. Ф. Иоффе: Несомненно. В этой области в довольно короткий период развития нашей техники будет достигнута полная автоматичность. Управление летательным аппаратом может быть и должно быть совершенно автоматизировано. На месте можно задать весь путь аппарату. Человеку не нужно будет беспокоиться о том, что аэроплан может перевернуться. К этому надо добавить, что в воздухе гораздо легче передвигаться, чем по земле, так как в воздухе мы можем избежать путей перекрещивания, что на улицах при двух измерениях представляет большие трудности при движении. В трех измерениях это не будет представлять никаких затруднений. Будут определенные пути, никаких столкновений не может быть. Вы садитесь в аэроплан и таким образом летите, аэроплан сам будет выполнять работу. Возможно и другое. Источник энергии находится на земле, с земли идет управление, вы имеете только регулирующие приспособления.

Внутриатомная энергия

Редактор: Имеются ли ещё источники энергии, которые нами совершенно не используются?

А. Ф. Иоффе: Если говорить об энергии внутриатомной, то запас её имеется колоссальный. Некоторую часть его можно, вероятно, использовать. Не совсем правильно называть эту энергию "запасами". Это не источник энергии, а её кладбище. Атом есть знак того, какие громадные запасы энергии, ранее существовавшие в мире, были уже затрачены. Но этот минимум не всегда абсолютен. Есть атомы недостроенные - радиоактивные атомы, где можно произвести дальнейшее уменьшение. Если взять четыре атома водорода, соединить их ядра с двумя электронами, а два оставить, то получится атом гелия - и тогда освободится громадное количество энергии. Если бы мы таким образом умели превращать водород в гелий, то это бы явилось большим источником энергии.

Ссылки

  • О Иоффе на портале Российской Академии наук

Крупнейшей заслугой Иоффе является основателем уникальной физической школы, которая позволила вывести советскую физику на мировой уровень. По инициативе Иоффе начиная с 1929 были созданы физико-технические институты в крупных промышленных городах: Харькове, Днепропетровске, Свердловске и Томске. За глаза и ученики, и другие коллеги с любовью и почтением называли Абрама Фёдоровича «папа Иоффе».



Под руководством А. Ф. Иоффе начинали свою научную деятельность будущие Нобелевские лауреаты Капица, работали крупнейшие учёные Александров, Алиханов, Арцимович,Бронштейн, Дорфман, Зельдович, Кикоин, Константинов, Курчатов, Тамм (также будущий лауреат Нобелевской премии), Френкель, Харитон и многие другие.

АБРАМ ФЕДОРОВИЧ

ИОФФЕ

(1880-1960)

Биография одного из основоположников физики академика А.Ф. Иоффе привлекает пристальное внимание историков науки.

А.Ф. Иоффе родился 29 октября 1980 г. в небольшом городке Ромны Полтавской губернии. В Ромнах не было гимназии - имелось лишь мужское реальное училище., в которое он и поступил. Примечательно что его одноклассником оказался С.П. Тимошенко - впоследствии крупный механик, иностранный член АН СССР. Физикой Иоффе заинтересовался еще в училище. Он часто подчеркивал, что произошло это не благодаря влиянию учителей, а, скорее, ему вопреки: уровень преподавания в училище был очень низким, учителя были прежде всего вероподдаными чиновниками.

Как известно, до революции для поступления в университеты необходимо было знание древних языков, которые преподавались только в гимназиях. Поэтому по окончании реального училища А.Ф. Иоффе остановил свой выбор на Петербургском технологическом институте, в котором, по его мнению, в наибольшей степени можно было научиться физике. В этом институте преподавали выдающиеся ученые, в частности И.И. Боргман, Н.А. Гезехус, Б. Л. Розинг и др. Наряду с физикой, Иоффе много работал в области ее биологических приложений, что в конце ХІХ - начале ХХ в. Было более чем необычно. Хотя в научном плане эти исследования и не дали какого-либо существенного выхода, они укрепили его в убеждении о плодотворности приложения физики к проблемам биологии.

В Технологическом институте Иоффе занимался еще и чисто инженерными работами, в основном во время летней практики.

По окончании Технологического института (1902 г.) А.Ф. Иоффе, заручившись рекомендациями Н.А. Гезехуса и директора Палаты мер и весов профессора Н.Е. Егорова, направился в Мюнхен, где в те годы работал В.К. Рентген.

В годы работы в лаборатории Рентгена (1903-1906) А.Ф. Иоффе выполнил ряд крупных исследований. К их числу нужно отнести прецизионный эксперимент по определению «энергетической мощности» радия.

Работы А.Ф. Иоффе по механическим и электрическим свойствам кристаллов, выполненные в мюнхенские годы, носили систематический характер. В процессе их проведения на примере кристаллического кварца им был изучен и правильно объяснен эффект упругого последействия.

Изучение электрических свойств кварца, влияния на проводимость кристаллов рентгеновских лучей, ультрафиолетового и естественного света привели А.Ф. Иоффе к открытию внутреннего фотоэффекта, выяснению пределов применимости закона Ома для описания прохождения тока через кристалл и исследованию своеобразных явлений, разыгрывающихся в приэлектродных областях.

Все эти работы Иоффе закрепили за ним репутацию физика, глубоко вдумывающегося в механизмы изучаемых им процессов и с исключительной точностью проводящего опыты, расширяющие представления об атомно-электронных явлениях в твердых телах.

А.Ф. Иоффе, отказавшись от лестного предложения Рентгена остаться в Мюнхене - для продолжения исследований и преподавательской работе в Мюнхенском университете, после блестящей защиты там в 1905 г. докторской диссертации.

С 1906 г. А.Ф. Иоффе начал работу в должности старшего лаборанта в Петербургском политехническом институте. В физической лаборатории института, которую возглавлял В.В. Скобельцын, Иоффе в 1906-1917 гг. Были выполнены блестящие работы по подтверждению эйнштейновской квантовой теории внешнего фотоэффекта, доказательству зернистой природы электронного заряда, определению магнитного поля катодных лучей (магистерская диссертация Петербургский университет, 1913 г.). Наряду с этим А.Ф. Иоффе продолжил и обобщал в докторской диссертации (Петроградский университет, 1915 г.) начатые еще в Мюнхене исследования по упругим и электрическим свойствам кварца и некоторых других кристаллов. Академия наук, в 1914 г. наградила А.Ф. Иоффе премией им. С.А. Иванова.

К этим важнейшим циклам исследований А.Ф. Иоффе, добавим еще два:

Одно из них - теоретическая работа ученого, посвященная тепловому излучению, в которой получили дальнейшее развитие классические исследования М. Планка.

Другая работа, также была выполнена им в физической лаборатории Политехнического института в соавторстве с преподавателем этого института М. В. Миловидовой-Кирпичевой. В работе исследовалась электропроводность ионных кристаллов. Результаты исследований по электропроводности ионных кристаллов были впоследствии, уже после окончания первой мировой войны, с блеском доложены А.Ф. Иоффе на сольвеевском конгрессе 1924 г., вызвали оживленную дискуссию у его знаменитых участников, и получили их полное признание.

В 1926 г. Я.И. Френкель, основываясь на экспериментах А.Ф. Иоффе и М. В. Миловидовой-Кирпичевой о тепловой диссоциации решетки, развил кинетическую теорию явлений переноса в твердых телах и разработал в 1933 г. дырочную теорию электропроводности полупроводников.

Наряду с интенсивной исследовательской работой, А.Ф. Иоффе много сил и времени уделял преподаванию. Он читал лекции не только в Политехническом институте, профессором которого стал в 1915 г., но также на известных в городе курсах П.Ф. Лесгафта, в Горном институте и в университете. Однако самым главным в этой деятельности Иоффе била организация в 1916 г. семинара по новой физике при Политехническом институте. Именно в эти годы А.Ф. Иоффе -сначала участник, а потом и руководитель семинара - выработал тот замечательный стиль ведения такого рода собраний, который создал ему заслуженную известность и характеризовал его как главу школы. Семинар Иоффе в Политехническом институте по праву считается важнейшим центром кристаллической физики.

Разработку планов физико-технического отдела будущего Государственного рентгенологического и радиологического института взял на себя А.Ф. Иоффе. Этот институт был создан 23 сентября 1918 г., а в 1921 г., его физико-технический отдел выделился в самостоятельный Государственный физико-технический рентгенологический институт (ФТИ), который более трех десятилетий и возглавлял А.Ф. Иоффе.

Наряду с созданием ФТИ, А.Ф. Иоффе принадлежит заслуга организации в 1919 г. при Политехническом институте факультета нового типа: физико-механического, деканом которого он также был более 30 лет.

Научная работа А.Ф. Иоффе была сосредоточена в стенах ФТИ, одной из лабораторий которого он неизменно заведовал, хотя тематика ее исследований, как и название, претерпели изменения. В 20-е годы основным направлением работы было изучение механических и электронных свойств твердого тела.

Начало 30-х годов ознаменовалось переходом ФТИ на новую тематику. Одним из основных направлений стала ядерная физика. А.Ф. Иоффе непосредственно ею и занимался, но наблюдая стремительный подъем этой области физики, быстро оценил ее грядущую роль в дальнейшем прогрессе науки и техники. Поэтому с конца 1932 г. физика ядра прочно вошла в тематику работ ФТИ.

С начала 30-х годов собственная научная работа А.Ф. Иоффе сосредоточилась на другой проблеме - проблеме физики полупроводников, и его лаборатория в ФТИ стала лабораторией полупроводников.

В 1950 г. А.Ф. Иоффе разработал теорию, на основе которой были сформулированы требования к полупроводниковым материалам, используемым в термобатареях и обеспечивающим получение максимального значения их КПД. Вслед за этим в 1951 г. Л.С. Стильбансом под руководством А.Ф. Иоффе и Ю.П. Маслаковца был разработан первый в мире холодильник. Это послужило началом развития новой области техники - термоэлектрического охлаждения. Соответствующие холодильники и термостаты широко применяются ныне во всем мире для решения ряда задач в радиоэлектронике, приборостроении, медицине, космической биологии и других областях науки и техники.

Последние годы жизни А.Ф. Иоффе прошли под знаком радостного творчества в стенах вновь созданного им Института полупроводников. Начиная с 1954 г. число публикаций маститого ученого в научных журналах, отражавшего его научную активность, резко возросло. Его работоспособность не могла не вызывать удивление и восхищение. Недаром одну из книг А.Ф. Иоффе на тему по термоэлектричеству назвали «библией по термоэлектричеству».

Абрам Федорович скончался 14 октября 1960 г. , две недели не дожив до своего 80-летия. Но благодаря своим выдающимся способностям физика и организатора науки, благодаря высоким личным качествам Абрам Федорович Иоффе сумел создать в стенах ФТИ исключительно благоприятную почву для быстрого созревания талантов. В этом его непреходящая заслуга перед Родиной и наукой.

2000 г.

ИОФФЕ, АБРАМ ФЕДОРОВИЧ (1880–1960), русский физик и организатор науки. Родился 29 октября 1880 в г.Ромны Полтавской губернии в семье купца 2-й гильдии. Окончил Ромненское реальное училище (1897), затем Санкт-Петербургский технологический институт (1902).

В 1903 отправился в Мюнхен к Рентгену, лучшему, по отзыву петербургских профессоров, физику-экспериментатору, для приобретения опыта в постановке эксперимента по проверке созданной Иоффе еще в годы учебы в училище резонансной теории запаха и чувства обоняния. Сначала работал практикантом, живя на собственные средства, потом получил место ассистента. В 1906, отклонив лестное предложение Рентгена остаться в Мюнхене, вернулся в Россию. Был зачислен старшим лаборантом в Политехнический институт, в 1913, после защиты магистерской диссертации, стал экстраординарным профессором, а в 1915, защитив докторскую диссертацию, – профессором кафедры общей физики. Параллельно читал лекции в Горном институте и на курсах Лесгафта.

В 1916 организовал в институте свой знаменитый семинар по физике. Его участниками были молодые ученые из Политехнического института и университета, вскоре ставшие ближайшими соратниками Иоффе при организации Физико-технического института (1918) и, шире, советской физики в целом. В 1918 Иоффе организовал физико-технический отдел в Рентгенологическом и радиологическом институте в Петрограде, в 1919 – физико-механический факультет в Политехническом институте для подготовки физиков, которые могли бы решать задачи, важные для промышленности, в 1932 – Агрофизический институт. По его инициативе начиная с 1929 были созданы Физико-технические институты в крупных промышленных городах (Харькове, Днепропетровске, Свердловске, Томске), Институт химической физики АН СССР. В годы войны Иоффе участвовал в строительстве радиолокационных установок в Ленинграде, во время эвакуации в Казани был председателем Военно-морской и Военно-инженерной комиссий. В 1952–1955 возглавлял лабораторию полупроводников АН СССР.

Первая работа Иоффе, составившая предмет его магистерской диссертации, была посвящена элементарному фотоэлектрическому эффекту и относилась к тому же кругу классических исследований, что и работы Дж.Томсона и Р.Милликена по определению заряда электрона. Он доказал реальность существования электрона независимо от остальной материи, определил абсолютную величину его заряда, исследовал магнитное действие катодных лучей, представляющих собой поток электронов, доказал статистический характер вылета электронов при внешнем фотоэффекте. Следующим обширным исследованием Иоффе было продолжение его работы (1905), выполненной в лаборатории Рентгена. Оно было посвящено изучению упругих и электрических свойств кварца и легло в основу его докторской диссертации. Обе эти работы отличали феноменальная скрупулезность и аккуратность, а также неизменное стремление свести все наблюдаемые эффекты в единую стройную схему – черты, присущие всем ученикам школы Иоффе.

Еще одна область исследований, где Иоффе были получены важные результаты, – физика кристаллов. В 1916–1923 он изучал механизм проводимости ионных кристаллов, в 1924 – их прочность и пластичность. Совместно с П.С.Эренфестом обнаружил «квантовый» характер сдвигов при данной нагрузке, получивший теоретическое объяснение лишь в 1950-е годы, а также открыл явление «упрочнения» материала (эффект Иоффе) – «залечивания» поверхностных трещин. Свои работы по проблемам физики твердого тела Иоффе обобщил в известной книге Физика кристаллов , написанной по материалам лекций, прочитанных им в 1927 во время длительной командировки в США.

В начале 1930-х годов по инициативе Иоффе начались систематические исследования новых в то время материалов – полупроводников. Первая работа в этой области была выполнена самим Иоффе совместно с Я.И.Френкелем и касалась анализа контактных явлений на границе металл – полупроводник. Ими объяснялось выпрямляющее свойство такого контакта в рамках теории туннельного эффекта, получившей развитие 40 лет спустя при описании туннельных эффектов в диодах. Работы по фотоэффекту в полупроводниках привели Иоффе к смелой гипотезе, что полупроводники способны обеспечить эффективное преобразование энергии излучения в электрическую энергию, что послужило предпосылкой к развитию новых областей полупроводниковой техники – созданию фотоэлектрических генераторов (в частности, кремниевых преобразователей солнечной энергии – «солнечных батарей»). Иоффе и его учениками была создана система классификации полупроводниковых материалов, разработана методика определения их основных свойств. Изучение термоэлектрических свойств полупроводников послужило началом развития новой области техники – термоэлектрического охлаждения. В Институте полупроводников была разработана серия термоэлектрических холодильников, которые широко применяются во всем мире для решения ряда задач в радиоэлектронике, приборостроении, космической биологии и т.д.

Во многих статьях, вышедших из стен ФТИ в 1920–1940-х годах, фамилии Иоффе нет в числе авторов, хотя его вклад в них виден любому специалисту. Исключительная научная щедрость ученого отвечала его моральным принципам и была составляющей «искусства руководить молодыми сотрудниками», о котором написал его ученик, Нобелевский лауреат Н.Н.Семенов: «Если ты хочешь, чтобы ученик занялся разработкой какой-либо новой идеи, сделай это незаметно, максимально стараясь, чтобы он как бы сам пришел к ней, приняв ее за свою собственную... Не увлекайся чрезмерным руководством учениками, давай им возможность максимально проявить инициативу, самим справляться с трудностями». Среди учеников А.Ф.Иоффе – такие всемирно известные физики, как П.Л.Капица, Л.Д.Ландау, И.В.Курчатов, А.П.Александров, Ю.Б.Харитон и многие другие.

Иоффе – автор множества монографий и учебников. Большой популярностью пользовались его Лекции по молекулярной физике (1919), им был написан 1-й том Курса физики Основные понятия из области механики. Свойства тепловой энергии. Электричество и магнетизм (1927, 1933, 1940), а также (совместно с Н.Н.Семеновым) первая часть 4-го тома Молекулярная физика (1932, 1935). В середине 1930-х годов под руководством Иоффе прошло обсуждение принципов построения курса физики для технических вузов; одним из результатов этих бурных дискуссий стало издание замечательного курса общей физики Г.С.Ландсберга. Иоффе был членом многих академий наук: Гёттингенской (1924), Берлинской (1928), Американской АН наук и искусств (1929), почетным членом АН Германии «Леопольдина» (1958), Итальянской АН (1959), почетным доктором Калифорнийского университета (1928), Сорбонны (1945), университетов Граца (1948), Бухареста и Мюнхена (1955).

Дата рождения:

Место рождения:

Ромны, Полтавская губерния, Российская империя

Дата смерти:

Место смерти:

Ленинград, СССР


Научная сфера:

Место работы:

Петроградский, затем Ленинградский, политехнический институт, Ленинградский физико-технический институт (основатель и директор), Агрофизический институт (основатель)

Альма-матер:

Технологический институт, Мюнхенский университет

Научный руководитель:

В. К. Рентген

Известные ученики:

П. Л. Капица, Н. Н. Семёнов, А. П. Александров, Я. Б. Зельдович, Б. П. Константинов, И. В. Курчатов, Ю. Б. Харитон

Известен как:

Физик, организатор науки, создатель советской физической школы («отец советской физики»)

Награды и премии:

Награды и звания

В массовой культуре

Адреса в Санкт-Петербурге

(17 (29) октября 1880, Ромны, Полтавская губерния - 14 октября 1960, Ленинград) - российский и советский физик, организатор науки, обыкновенно именуемый «отцом советской физики», академик (1920), вице-президент АН СССР (1942-1945), создатель научной школы, давшей многих выдающихся советских физиков, таких как А. Александров, М. Бронштейн, Я. Дорфман, П. Капица, И. Кикоин, Б. Константинов, И. Курчатов, Н. Семёнов, Я. Френкель и другие.

Биография

Родился в 1880 году в семье купца второй гильдии Файвиша (Фёдора Васильевича) Иоффе и домохозяйки Рашели Абрамовны Вайнштейн. Среднее образование получает в реальном училище города Ромны Полтавской губернии (1889-1897), где заводит дружеские отношения со Степаном Тимошенко, связь с которым поддерживает и в зрелом возрасте.

1902 - окончил Санкт-Петербургский Технологический институт. 1905 - окончил Мюнхенский университет в Германии, где работал под руководством В. К. Рентгена и получил степень доктора философии.

С 1906 работал в Политехническом институте, где в 1918 организовал Физико-механический факультет для подготовки инженеров-физиков. В 1911 принял лютеранство для вступления в брак с нееврейкой. Профессор с 1913.

В 1911 году А. Ф. Иоффе определил заряд электрона, использовав ту же идею, что и Р. Милликен: в электрическом и гравитационном полях уравновешивались заряженные частицы металла (в опыте Милликена - капельки масла). Однако эту работу Иоффе опубликовал в 1913 году (Милликен опубликовал свой результат несколько раньше, поэтому в мировой литературе эксперимент получил его имя).

С 1913 по 1915 год читал лекции на Курсах П. Ф. Лесгафта.

В 1913 защитил магистерскую и в 1915 г. докторскую диссертации по физике. С 1918 - член-корреспондент, а с 1920 - действительный член Российской академии наук.

В 1918 создаёт и возглавляет физико-технический отдел при Государственном рентгенологическом и радиологическом институте, являясь также Президентом этого института (директором был профессор Неменов М.И.). В 1921 стал директором Физико-технического института АН СССР, созданного на основе отдела и названного теперь его именем. В 1919-1923 - председатель Научно-технического комитета петроградской промышленности, в 1924-1930 - председатель Всероссийской ассоциации физиков, с 1932 - директор Агрофизического института.

Абрам Иоффе - один из инициаторов создания Дома учёных в Ленинграде (1934). В начале Отечественной войны назначен председателем Комиссии по военной технике, в 1942 - председателем военной и военно-инженерной комиссии при Ленинградском горкоме партии.

В декабре 1950, во время кампании по «борьбе с космополитизмом», Иоффе был снят с поста директора и выведен из состава Учёного совета института. В 1952 году возглавил лабораторию полупроводников АН СССР. В 1954 на основе лаборатории организован Институт полупроводников АН СССР.

Автор работ по экспериментальному обоснованию теории света (1909-1913), физике твёрдого тела, диэлектрикам и полупроводникам. Иоффе был редактором многих научных журналов, автором ряда монографий, учебников и популярных книг, в том числе «Основные представления современной физики» (1949), «Физика полупроводников» (1957) и другие.

Крупнейшей заслугой А.Ф. Иоффе является основание уникальной физической школы. Первым этапом этой деятельности была организация в 1916 семинара по физике. К участию в своём семинаре Иоффе привлёк молодых учёных из Политехнического института и Петербургского университета, которые вскоре стали его ближайшими соратниками при организации Физико-технического института. По инициативе Иоффе начиная с 1929 были созданы Физико-технические институты в крупных промышленных городах: Харькове, Днепропетровске, Свердловске и Томске. За глаза и ученики, и другие коллеги с любовью и почтением называли Абрама Фёдоровича «папа Иоффе».

Под руководством А.Ф. Иоффе начинали свою научную деятельность будущие Нобелевские лауреаты П.Л. Капица, Н.Н. Семёнов, Л.Д. Ландау, работали крупнейшие учёные А.П. Александров, А.И. Алиханов, Л.А. Арцимович, М.П. Бронштейн, Я.Г. Дорфман, Я.Б. Зельдович, И.К. Кикоин, Б.П. Константинов, И.В. Курчатов, И.Е. Тамм (также будущий лауреат Нобелевской премии), Я.И. Френкель, Ю.Б. Харитон и многие другие.

А. Ф. Иоффе скончался в своём рабочем кабинете 14 октября 1960 года. Похоронен на Литераторских мостках Волкова кладбища, на его могиле установлен памятник работы М. К. Аникушина.

Награды и звания

  • Герой Социалистического Труда (1955).
  • Заслуженный деятель науки РСФСР (1933), лауреат Сталинской премии (1942), Ленинской премии (посмертно, 1961).
  • Иоффе был членом многих академий наук: Гёттингенской (1924), Берлинской (1928), Американской академии наук и искусств (1929), почётным членом АН Германии «Леопольдина» (1958), Итальянской АН (1959), почётным доктором Калифорнийского университета (1928), Сорбонны (1945), университетов Граца (1948), Бухареста и Мюнхена (1955).

Память

  • В честь А. Ф. Иоффе был назван кратер Иоффе на Луне и Научно-исследовательское судно «Академик Иоффе».
  • В ноябре 1960 года имя А. Ф. Иоффе присвоено Физико-техническому институту АН СССР
  • В 1964 году перед зданием ФТИ установлен памятник А. Ф. Иоффе. Такой же бюст установлен в Большом актовом зале ФТИ им. А. Ф. Иоффе.
  • На зданиях, где работал Абрам Иоффе, установлены мемориальные доски.
  • Имя А. Ф. Иоффе носит улица в Адлерсхофе (нем. Abram-Joffe Straße ).
  • 30 октября 2001 года площади между главными зданиями ФТИ им. А. Ф. Иоффе и Политехнического университета, от которой начинается улица Курчатова, присвоено название Площадь Академика Иоффе .

В массовой культуре

Широкой массе простых трудящихся имя академика Иоффе известно благодаря песне В. С. Высоцкого «Утренняя гимнастика»:

Адреса в Санкт-Петербурге

  • Политехническая ул., дом 26 - Главное здание ФТИ им. А. Ф. Иоффе, которым А. Ф. Иоффе руководил до 1950 года и где он жил до 1953 года.
  • Каменноостровский проспект, дом 47, кв. № 18 (1953-1956).
  • Набережная Кутузова (1956-1960).

Абрам Федорович Иоффе родился 17 (29) октября 1880 года в городе Ромны Полтавской губернии в семье купца второй гильдии. Окончил Ромненское реальное училище, затем - Санкт-Петербургский технологический институт (1902 год) и Мюнхенский университет (Германия), где получил степень доктора философии. С 1906 года работал в Санкт-Петербургском политехническом институте, где через 12 лет организовал физико-механический факультет для подготовки инженеров-физиков. В 1913-м Абрам Федорович защитил магистерскую диссертацию по физике и получил звание профессора, а через два года - уже докторскую. С 1918-го - член-корреспондент, создал физико-технический отдел при Государственном рентгенологическом и радиологическом институте, в этом же году стал президентом этого института, с 1920-го - действительный член Российской академии наук. Через год занял должность директора Физико-технического института АН СССР, созданного на основе вышеупомянутого отдела. С 1932-го - директор Агрофизического института. Во время кампании «по борьбе с космополитизмом» с декабря 1950 года Иоффе снимают с должности директора и выводят из состава ученого совета института. В 1952-м он возглавил лабораторию полупроводников АН СССР, а через два года на ее основе организовал Институт полупроводников АН СССР. Скончался Абрам Федорович в своем рабочем кабинете 14 октября 1960 года.

Абрама Федоровича Иоффе можно по праву считать создателем советской физической школы, которая воспитала многих блестящих ученых-теоретиков и экспериментаторов. В списке учеников Иоффе - цвет советской науки: П. Л. Капица, Л. Д. Ландау, И. В. Курчатов и многие другие. Абрам Федорович был не только гениальным ученым, но и обладал недюжинными организаторскими способностями - умел находить и привлекать к работе молодые таланты, пропагандировать науку, увлечь коллег мечтами о будущем техники.

Основные достижения Иоффе связаны с областью физики твердого тела. Еще в Мюнхене, работая в лаборатории помощником физика В.-К. Рентгена, Иоффе провел ряд крупных исследований, которые принесли ему репутацию ученого, глубоко вникающего в механизмы изучаемых процессов и проводящего опыты с исключительной точностью.

Первая работа Абрама Федоровича была посвящена элементарному фотоэлектрическому эффекту (1911 год). В ней он доказал существование электрона независимо от остальной материи и определил абсолютную величину его заряда. Ученый подвергал воздействию рентгеновских лучей и электрического поля мельчайшие наэлектризованные металлические пылинки. Условия опыта были таковыми, что электрическое поле уравновешивало силу тяжести и пылинки оставались во взвешенном состоянии. Однако при воздействии рентгеновских лучей, которые выбивали часть заряда, пылинки приходили в движение и для их уравновешивания приходилось изменять напряженность электрического поля. Меняя параметры поля, ученый мог управлять пылинками: переносить их в любую точку камеры, сообщать им утраченный заряд, наблюдать обратное движение. В результате этих исследований было доказано, что заряд пылинок изменяется определенными порциями, а это подтверждает то, что атом состоит из заряженных частиц с вполне конкретными зарядами. Кроме этого, с помощью данного опыта Абрам Федорович смог рассчитать удельный заряд элементарной частицы, уравновешивая с помощью электрического поля силу тяжести пылинки. Получаемая величина заряда всегда оказывалась кратной определенному значению - заряду электрона.

Такой же опыт независимо от Иоффе провел и Роберт Милликен (1912 год). Но вместо металлической пылинки он использовал капельку масла. Однако публикация Милликена вышла раньше, чем сообщение в печати об опыте Иоффе, поэтому первенство открытия принадлежит американскому ученому.

Дальнейшее исследование Иоффе в области физики твердого тела было естественным продолжением работы в лаборатории Рентгена - изучение упругих и электрических свойств кварца. Ученый экспериментально доказал, что в кристаллах электрический ток может проводиться с помощью свободных ионов, а не только электронами. Абрам Федорович, изучая механические свойства кристаллов, установил зависимости их разрушения, что имело большое значение для техники.

Иоффе решил задачу об электрических аномалиях кварца, показав, что они связаны с образованием объемных зарядов внутри вещества, указал на сильное влияние даже незначительных примесей на электропроводность диэлектриков - материалов, которые плохо или вовсе не проводят электрический ток, разработал способы очистки кристаллов и создал новые электротехнические материалы. Ученый также предложил методы устранения перенапряжений в кристаллах, сформулировал новую идею о природе полупроводниковых свойств большой группы сплавов, открыл явление (названное позже эффектом Иоффе), в результате которого повышается прочность кристалла при сглаживании его поверхности. Такое сглаживание можно достигнуть медленным растворением кристалла. Удивителен тот факт, что растворение кристалла лучше идет вдоль микротрещин и в результате этого они исчезают, а прочность кристалла при этом увеличивается в сотни раз.

Все свои значимые работы в области физики твердого тела Иоффе обобщил в книге «Физика кристаллов», которая была создана на основе многочисленных лекций, прочитанных им в 1927 году во время командировки в США.

В начале 1930-х Иоффе изучал новые для того времени материалы - полупроводники, которые стали одним из главных направлений его последующих исследований.

Опыты привели ученого к смелой гипотезе, что полупроводники способны обеспечить эффективное преобразование энергии излучения в электрическую энергию. А это, в свою очередь, дало толчок развитию новых областей знания, например созданию кремниевых преобразователей солнечной энергии, широко известных сегодня как солнечные батареи. Правда, до создания полноценных солнечных батарей было еще далеко, а в ближайшем будущем работы Иоффе в области полупроводников пригодились на фронте. Так, ученый предложил оригинальную конструкцию солдатского котелка… для обеспечения работы радиостанций - ко дну котелка крепились полупроводниковые спаи, а другие спаи в зависимости от поры года помещались в холодную воду или снег. Затем котелок подвешивался над костром. В результате разности температур между спаями в такой своеобразной цепи возникала электродинамическая сила, обеспечивавшая бесперебойную работу партизанских радиостанций.

После войны на базе созданного Института полупроводников работы по их применению продолжились - велись обширные поиски и изучение новых материалов. Иоффе с учениками создал систему классификации полупроводниковых материалов, разработал методики определения их основных свойств. В институте на базе этих исследований была сконструирована и испытана серия охлаждающих устройств. В итоге Иоффе дал жизнь новой отрасли науки - термоэлектроэнергетике, которая призвана решить такие актуальные для современного общества проблемы, как преобразование световой и тепловой энергии в электрическую.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама