THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама
Интерес к математике обозначился у Ферма как-то неожиданно и в достаточно зрелом возрасте. В 1629 г. в его руки попадает латинский перевод работы Паппа, содержащий краткую сводку результатов Аполлония о свойствах конических сечений. Ферма, полиглот, знаток права и античной филологии, вдруг задается целью полностью восстановить ход рассуждений знаменитого ученого. С таким же успехом современный адвокат может попытаться самостоятельно воспроизвести все доказательства по монографии из проблем, скажем, алгебраической топологии. Однако, немыслимое предприятие увенчивается успехом. Более того, вникая в геометрические построения древних, он совершает удивительное открытие: для нахождения максимумов и минимумов площадей фигур не нужны хитроумные чертежи. Всегда можно составить и решить некое простое алгебраическое уравнение, корни которого определяют экстремум. Он придумал алгоритм, который станет основой дифференциального исчисления.

Он быстро продвинулся дальше. Он нашел достаточные условия существования максимумов, научился определять точки перегиба, провел касательные ко всем известным кривым второго и третьего порядка. Еще несколько лет, и он находит новый чисто алгебраический метод нахождения квадратур для парабол и гипербол произвольного порядка (то есть интегралов от функций вида y p = Cx q и y p x q = С ), вычисляет площади, объемы, моменты инерции тел вращения. Это был настоящий прорыв. Чувствуя это, Ферма начинает искать общения с математическими авторитетами того времени. Он уверен в себе и жаждет признания.

В 1636 г. он пишет первое письмо Его преподобию Марену Мерсенну: ”Святой отец! Я Вам чрезвычайно признателен за честь, которую Вы мне оказали, подав надежду на то, что мы сможем беседовать письменно; ...Я буду очень рад узнать от Вас о всех новых трактатах и книгах по Математике, которые появилась за последние пять-шесть лет. ...Я нашел также много аналитических методов для различных проблем, как числовых, так и геометрических, для решения которых анализ Виета недостаточен. Всем этим я поделюсь с Вами, когда Вы захотите, и притом без всякого высокомерия, от которого я более свободен и более далек, чем любой другой человек на свете.”

Кто такой отец Мерсенн? Это францисканский монах, ученый скромных дарований и замечательный организатор, в течении 30 лет возглавлявший парижский математический кружок, который стал подлинным центром французской науки. В последствии кружок Мерсенна указом Людовика XIV будет преобразован в Парижскую академию наук. Мерсенн неустанно вел огромную переписку, и его келья в монастыре ордена минимов на Королевской площади была своего рода “почтамтом для всех ученых Европы, начиная от Галилея и кончая Гоббсом”. Переписка заменяла тогда научные журналы, которые появились значительно позже. Сборища у Мерсенна происходили еженедельно. Ядро кружка составляли самые блестящие естествоиспытатели того времен: Робервиль, Паскаль-отец, Дезарг, Мидорж, Арди и конечно же, знаменитый и повсеместно признанный Декарт. Рене дю Перрон Декарт (Картезий), дворянская мантия, два родовых поместья, основоположник картезианства, “отец” аналитической геометрии, один из основателей новой математики, а так же друг и товарищ Мерсенна по иезуитскому колледжу. Этот замечательный человек станет кошмаром для Ферма.

Мерсенн счел результаты Ферма достаточно интересными, чтобы ввести провинциала в свой элитный клуб. Ферма тут же завязывает переписку со многими членами кружка и буквально засыпает письмами самого Мерсенна. Кроме того, он отсылает на суд ученых мужей законченные рукописи: “Введение к плоским и телесным местам”, а год спустя - “Способ отыскания максимумов и минимумов” и “Ответы на вопросы Б. Кавальери”. То, что излагал Ферма, была абсолютная новь, однако сенсация не состоялась. Современники не содрогнулись. Они мало, что поняли, но зато нашли однозначные указание на то, что идею алгоритма максимизации Ферма заимствовал из трактата Иоханнеса Кеплера с забавным названием “Новая стереометрия винных бочек”. Действительно, в рассуждения Кеплера встречаются фразы типа “Объем фигуры наибольший, если по обе стороны от места наибольшего значения убывание сначала нечувствительно”. Но идея малости приращения функции вблизи экстремума вовсе не носилась в воздухе. Лучшие аналитические умы того времени были не готовы к манипуляциям с малыми величинами. Дело в том, что в то время алгебра считалась разновидностью арифметики, то есть математикой второго сорта, примитивным подручным средством, разработанным для нужд низменной практики (“хорошо считают только торговцы”). Традиция предписывала придерживаться сугубо геометрических методов доказательств, восходящих к античной математике. Ферма первый понял, что бесконечно малые величины можно складывать и сокращать, но довольно затруднительно изображать в виде отрезков.

Понадобилось почти столетие, чтобы Жан д’Аламбер в знаменитой “Энциклопедии” признал: “Ферма был изобретателем новых исчислений. Именно у него мы встречаем первое приложение дифференциалов для нахождения касательных”. В конце XVIII века еще более определенно выскажется Жозеф Луи граф де Лагранж: “Но геометры - современники Ферма - не поняли этого нового рода исчисления. Они усмотрели лишь частные случаи. И это изобретение, которое появилось незадолго перед “Геометрией” Декарта, оставалось бесплодным в течении сорока лет”. Лагранж имеет в виду 1674 г., когда вышли в свет “Лекции” Исаака Барроу, подробно освещавшие метод Ферма.

Кроме всего прочего быстро обнаружилось, что Ферма более склонен формулировать новые проблемы, нежели, чем смиренно решать задачи, предложенные метрами. В эпоху дуэлей обмен задачами между учеными мужами был общепринят, как форма выяснения проблем, связанных с субординацией. Однако Ферма явно не знает меры. Каждое его письмо - это вызов, содержащий десятки сложных нерешенных задач, причем на самые неожиданные темы. Вот образчик его стиля (адресовано Френиклю де Бесси): “Item, каков наименьший квадрат, который при уменьшении на 109 и прибавлении единицы даст квадрат? Если Вы не пришлете мне общего решения, то пришлите частное для этих двух чисел, которые я выбрал небольшими, чтобы Вас не очень затруднить. После того как Я получу от Вас ответ, я предложу Вам некоторые другие вещи. Ясно без особых оговорок, что в моем предложении требуется найти целые числа, поскольку в случае дробных чисел самый незначительный арифметик смог бы прийти к цели.” Ферма часто повторялся, формулируя одни и те же вопросы по несколько раз, и откровенно блефовал, утверждая, что располагает необыкновенно изящным решением предложенной задачи. Не обходилось и без прямых ошибок. Некоторые из них были замечены современниками, а кое какие коварные утверждения вводили в заблуждение читателей в течении столетий.

Кружок Мерсенна прореагировал адекватно. Лишь Робервиль, единственный член кружка, имевший проблемы с происхождением, сохраняет дружеский тон писем. Добрый пастырь отец Мерсенн пытался вразумить “тулузского нахала”. Но Ферма не намерен оправдываться: ”Преподобный отец! Вы мне пишете, что постановка моих невозможных проблем рассердила и охладила господ Сен-Мартена и Френикля и что это послужило причиной прекращения их писем. Однако я хочу возразить им, что то, что кажется сначала невозможным, на самом деле не является таковым и что есть много проблем, о которых, как сказал Архимед... ” и т.д..

Однако Ферма лукавит. Именно Френиклю он послал задачу о нахождении прямоугольного треугольника с целочисленными сторонами, площадь которого равна квадрату целого числа. Послал, хотя знал, что задача заведомо не имеет решения.

Самую враждебную позицию по отношению к Ферма занял Декарт. В его письме Мерсенну от 1938 г. читаем: “так как я узнал, что это тот самый человек который перед тем пытался опровергнуть мою “Диоптрику”, и так как Вы сообщили мне, что он послал это после того, как прочел мою “Геометрию” и в удивлении, что я не нашел ту же вещь, т. е. (как имею основание его истолковать) послал это с целью вступить в соперничество и показать, что в этом он знает больше, чем я, и так как еще из ваших писем я узнал, что за ним числится репутация весьма сведущего геометра, то я считаю себя обязанным ему ответить.” Свой ответ Декарт в последствии торжественно обозначит как “малый процесс Математики против г. Ферма”.

Легко понять, что привело в ярость именитого ученого. Во-первых, в рассуждениях Ферма постоянно фигурируют координатные оси и представление чисел отрезками - прием, который Декарт всесторонне развивает в своей только что изданной “Геометрии”. Ферма приходит к идее замены чертежа вычислениями совершенно самостоятельно, в чем-то он даже более последователен, чем Декарт. Во-вторых, Ферма блестяще демонстрирует эффективность своего метода нахождения минимумов на примере задачи о кратчайшем пути светового луча, уточняя и дополняя Декарта с его “Диоптрикой”.

Заслуги Декарта как мыслителя и новатора огромны, но откроем современную “Математическую энциклопедию” и просмотрим список терминов связанных с его именем: “Декартовы координаты” (Лейбниц, 1692) , “Декартов лист”, “Декарта овалы ”. Ни одно из его рассуждений не вошло в историю как “Теорема Декарта”. Декарт в первую очередь идеолог: он основатель философской школы, он формирует понятия, совершенствует систему буквенных обозначений, но в его творческом наследии мало новых конкретных приемов. В противоположность ему Пьер Ферма мало пишет, но по любому поводу может придумать массу остроумных математических трюков (см. там же “Теорема Ферма”, ”Принцип Ферма”, ”Метод бесконечного спуска Ферма”). Вероятно, они вполне справедливо завидовали друг другу. Столкновение было неизбежно. При иезуитском посредничестве Мерсенна разгорается война, длившаяся два года. Впрочем, Мерсенн и здесь оказался прав перед историей: яростная схватка двух титанов, их напряженная, мягко говоря, полемика способствовала осмыслению ключевых понятий математического анализа.

Первым теряет интерес к дискуссии Ферма. По-видимому, он напрямую объяснился с Декартом и больше никогда не задевал соперника. В одной из своих последних работ “Синтез для рефракции”, рукопись которой он послал де ла Шамбру, Ферма через слово поминает “ученейшего Декарта” и всячески подчеркивает его приоритет в вопросах оптики. Между тем именно эта рукопись содержала описание знаменитого “принципа Ферма”, который обеспечивает исчерпывающее объяснение законов отражения и преломления света. Реверансы в сторону Декарта в работе такого уровня были совершенно излишни.

Что же произошло? Почему Ферма, отложив в сторону самолюбие, пошел на примирение? Читая письма Ферма тех лет (1638 - 1640 гг.), можно предположить самое простое: в этот период его научные интересы резко изменились. Он забрасывает модную циклоиду, перестает интересоваться касательными и площадями, и на долгие 20 лет забывает о своем методе нахождения максимума. Имея огромные заслуги в математике непрерывного, Ферма целиком погружается в математику дискретного, оставив опостылевшие геометрические чертежи своим оппонентам. Его новой страстью становятся числа. Собственно говоря, вся “Теория чисел”, как самостоятельная математическая дисциплина, своим появлением на свет целиком обязана жизни и творчеству Ферма.

<…> После смерти Ферма его сын Самюэль издал в 1670 г. принадлежащий отцу экземпляр “Арифметики” под названием “Шесть книг арифметики александрийца Диофанта с комментариями Л. Г. Баше и замечаниями П. де Ферма, тулузского сенатора”. В книгу были включены также некоторые письма Декарта и полный текст сочинения Жака де Бильи “Новое открытие в искусстве анализа”, написанное на основе писем Ферма. Издание имело невероятный успех. Перед изумленными специалистами открылся невиданный яркий мир. Неожиданность, а главное доступность, демократичность теоретико-числовых результатов Ферма породили массу подражаний. В то время мало кто понимал как вычисляется площадь параболы, но каждый школяр мог осознать формулировку Великой теоремы Ферма. Началась настоящая охота за неизвестными и утерянными письмами ученого. До конца XVII в. было издано и переиздано каждое найденное его слово. Но бурная история развития идей Ферма только начиналась.

Файл FERMA-KDVar © Н. М. Козий, 2008

Свидетельство Украины № 27312

КРАТКОЕ ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА


Великая теорема Ферма формулируется следующим образом: диофантово уравнение (http://soluvel.okis.ru/evrika.html):

А n + В n = С n * /1/

где n - целое положительное число, большее двух, не имеет решения в целых положительных числах A , B , С .

ДОКАЗАТЕЛЬСТВО

Из формулировки Великой теоремы Ферма следует: если n – целое положительное число, большее двух, то при условии, что два из трех чисел А , В или С - целые положительные числа, одно из этих чисел не является целым положительным числом.

Доказательство строим, исходя из основной теоремы арифметики, которая называется «теоремой о единственности факторизации» или «теоремой о единственности разложения на простые множители целых составных чисел». Возможны нечетные и четные показатели степени n . Рассмотрим оба случая.

1. Случай первый: показатель степени n - нечетное число.

В этом случае выражение /1/ преобразуется по известным формулам следующим образом:

А n + В n = С n /2/

Полагаем, что A и B – целые положительные числа.

Числа А , В и С должны быть взаимно простыми числами.

Из уравнения /2/ следует, что при заданных значениях чисел A и B множитель ( A + B ) n , С.

Допустим, что число С - целое положительное число. С учетом принятых условий и основной теоремы арифметики должновыполняться условие:

С n = A n + B n =(A+B) n ∙ D n , / 3/

гдемножитель D n D

Из уравнения /3/ следует:

Из уравнения /3/ также следует, что число [C n = A n + B n ] при условии, что число С ( A + B ) n . Однако известно, что:

A n + B n < ( A + B ) n /5/

Следовательно:

- дробное число, меньшее единицы. /6/

Дробное число.

n

При нечетных показателях степени n >2 число:

< 1- дробное число, не являющееся рациональной дробью.

Из анализа уравнения /2/ следует, что при нечетном показателе степени n число:

С n = А n + В n = (A+B)

состоит из двух определенных алгебраических множителей, при этом при любом значении показателя степени n неизменным остаетсяалгебраический множитель ( A + B ).

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при нечетном показателе степени n >2.

2. Случай второй: показатель степени n - четное число.

Суть великой теоремы Ферма не изменится, если уравнение /1/ перепишем следующим образом:

A n = C n - B n /7/

В этом случае уравнение /7/ преобразуется следующим образом:

A n = C n - B n = ( С +B)∙(C n-1 + C n-2 · B+ C n-3 ∙ B 2 +…+ C B n -2 + B n -1 ). /8/

Принимаем, что С и В – целые числа.

Из уравнения /8/ следует, что при заданных значениях чисел B и C множитель (С+ B ) имеет одно и тоже значение при любых значениях показателя степени n , следовательно, он является делителем числа A .

Допустим, что число А – целое число. С учетом принятых условий и основной теоремы арифметики должновыполняться условие:

А n = С n - B n =(С+ B ) n D n , / 9/

гдемножитель D n должен быть целым числом и, следовательно, число D также должно быть целым числом.

Из уравнения /9/ следует:

/10/

Из уравнения /9/ также следует, что число [А n = С n - B n ] при условии, что число А – целое число, должно делиться на число (С+ B ) n . Однако известно, что:

С n - B n < (С+ B ) n /11/

Следовательно:

- дробное число, меньшее единицы. /12/

Дробное число.

Отсюда следует, что при нечетном значении показателя степени n уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах.

При четных показателях степени n >2 число:

< 1- дробное число, не являющееся рациональной дробью.


Таким образом, великая теорема Ферма не имеет решения в целых положительных числах и при четном показателе степени n >2.

Из изложенного следует общий вывод: уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах А, В и С при условии, что показатель степени n >2.

ДОПОЛНИТЕЛЬНЫЕ ОБОСНОВАНИЯ

В том случае когда показатель степени n четное число, алгебраическое выражение (C n - B n ) раскладывается на алгебраические множители:

C 2 – B 2 = (C-B) ∙ (C+B); /13/

C 4 – B 4 = ( C-B) ∙ (C+B) (C 2 + B 2);/14/

C 6 – B 6 = (C-B) ∙ (C+B) · (C 2 –CB + B 2) ∙ (C 2 +CB+ B 2); /15/

C 8 – B 8 = (C-B) ∙ (C+B) ∙ (C 2 + B 2) ∙ (C 4 + B 4)./16/

Приведем примеры в числах.

ПРИМЕР 1: В=11; С=35.

C 2 B 2 = (2 2 ∙ 3) ∙ (2 · 23) = 2 4 · 3 · 23;

C 4 B 4 = (2 2 ∙ 3) ∙ (2 · 23) · (2 · 673) = 2 4 · 3 · 23 · 673;

C 6 B 6 = (2 2 ∙ 3) ∙ (2 · 23) · (31 2) ·(3 · 577) =2 ∙ 3 ∙ 23 ∙ 31 2 ∙ 577;

C 8 B 8 = (2 2 ∙ 3) ∙ (2 · 23) · (2 · 673) ∙ (2 · 75633) = 2 5 ∙ 3 ∙ 23 ∙673 ∙ 75633.

ПРИМЕР 2: В=16; С=25.

C 2 B 2 = (3 2) ∙ (41) = 3 2 ∙ 41;

C 4 B 4 = (3 2) ∙ (41) · (881) =3 2 ∙ 41 · 881;

C 6 B 6 = (3 2) ∙ (41) ∙ (2 2 ∙ 3) ∙ (13 · 37) · (3 ∙ 7 · 61) = 3 3 · 7 ∙ 13· 37 ∙ 41 ∙ 61;

C 8 B 8 = (3 2) ∙ (41) ∙ (881) ∙ (17 ·26833) = 3 2 ∙ 41 ∙ 881 ∙ 17 ·26833.

Из анализа уравнений /13/, /14/, /15/ и /16/ и соответствующих им числовых примеров следует:

При заданном показателе степени n , если он четное число, число А n = С n - B n раскладывается на вполне определенное количество вполне определенных алгебраических множителей;

При любом показателе степени n , если он четное число, в алгебраическом выражении (C n - B n ) всегда имеются множители ( C - B ) и ( C + B ) ;

Каждому алгебраическому множителю соответствует вполне определенный числовой множитель;

При заданных значениях чисел В и С числовые множители могут быть простыми числами или составными числовыми множителями;

Каждый составной числовой множитель является произведением простых чисел, которые частично или полностью отсутствуют в составе других составных числовых множителей;

Величина простых чисел в составе составных числовых множителей увеличивается с увеличением этих множителей;

В состав наибольшего составного числового множителя, соответствующего наибольшему алгебраическому множителю, входит наибольшее простое число в степени, меньшей показателя степениn (чаще всего в первой степени).

ВЫВОДЫ: дополнительные обоснования подтверждают заключение о том, что великая теорема Ферма не имеет решения в целых положительных числах.

инженер-механик

n > 2 {\displaystyle n>2} уравнение:

не имеет решений в целых ненулевых числах .

Встречается более узкий вариант формулировки, утверждающий, что это уравнение не имеет натуральных решений. Однако очевидно, что если существует решение для целых чисел, то существует и решение в натуральных числах. В самом деле, пусть a , b , c {\displaystyle a,b,c} - целые числа, дающие решение уравнения Ферма. Если n {\displaystyle n} чётно, то | a | , | b | , | c | {\displaystyle |a|,|b|,|c|} тоже будут решением, а если нечётно, то перенесём все степени отрицательных значений в другую часть уравнения, изменив знак. Например, если бы существовало решение уравнения a 3 + b 3 = c 3 {\displaystyle a^{3}+b^{3}=c^{3}} и при этом a {\displaystyle a} отрицательно, а прочие положительны, то b 3 = c 3 + | a | 3 {\displaystyle b^{3}=c^{3}+|a|^{3}} , и получаем натуральные решения c , | a | , b . {\displaystyle c,|a|,b.} Поэтому обе формулировки эквивалентны.

Обобщениями утверждения теоремы Ферма являются опровергнутая гипотеза Эйлера и открытая гипотеза Ландера - Паркина - Селфриджа .

История

Для случая эту теорему в X веке пытался доказать ал-Ходжанди , но его доказательство не сохранилось.

В общем виде теорема была сформулирована Пьером Ферма в 1637 году на полях «Арифметики » Диофанта . Дело в том, что Ферма делал свои пометки на полях читаемых математических трактатов и там же формулировал пришедшие на ум задачи и теоремы. Теорему, о которой ведётся речь, он записал с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было поместить на полях книги:

Наоборот, невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашёл этому поистине чудесное доказательство, но поля книги слишком узки для него.

Оригинальный текст (лат.)

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos & generaliter nullam in infinitum ultra quadratum potestatem in duas eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.

Ферма приводит только доказательство, как решение задачи, сводимой к четвёртой степени теоремы n = 4 {\displaystyle n=4} , в 45-м комментарии к «Арифметике» Диофанта и в письме к Каркави (август 1659 года) . Кроме этого, Ферма включил случай n = 3 {\displaystyle n=3} в список задач, решаемых методом бесконечного спуска .

Над полным доказательством Великой теоремы работало немало выдающихся математиков и множество дилетантов-любителей; считается, что теорема стоит на первом месте по количеству некорректных «доказательств». Тем не менее эти усилия привели к получению многих важных результатов современной теории чисел . Давид Гильберт в своём докладе «Математические проблемы» на II Международном конгрессе математиков (1900) отметил, что поиск доказательства для этой, казалось бы, малозначимой теоремы привёл к глубоким результатам в теории чисел . В 1908 году немецкий любитель математики Вольфскель завещал 100 тыс. немецких марок тому, кто докажет теорему Ферма. Однако после Первой мировой войны премия обесценилась .

В 1980-х годах появился новый подход к решению проблемы. Из гипотезы Морделла , доказанной Фальтингсом в 1983 году , следует, что уравнение a n + b n = c n {\displaystyle a^{n}+b^{n}=c^{n}} при n > 3 {\displaystyle n>3} может иметь лишь конечное число взаимно простых решений.

Немецкий математик Герхард Фрай предположил, что Великая теорема Ферма является следствием гипотезы Таниямы - Симуры . Это предположение было доказано Кеном Рибетом .

Последний важный шаг в доказательстве теоремы был сделан Уайлсом в сентябре 1994 года . Его 130-страничное доказательство было опубликовано в журнале «Annals of Mathematics » .

Первый вариант своего доказательства Уайлс опубликовал в 1993 году (после семи лет работы), но в нём вскоре был обнаружен серьёзный [какой? ] пробел, который с помощью Ричарда Лоуренса Тейлора удалось достаточно быстро устранить . В 1995 году был опубликован завершающий вариант . В 2016 году за доказательство Великой теоремы Ферма Эндрю Уайлс получил Абелевскую премию .

Колин Мак-Ларти отметил, что, возможно, доказательство Уайлса удастся упростить, чтобы не предполагать существования так называемых «больших кардиналов » .

Теорема Ферма также тривиально следует из abc-гипотезы , о доказательстве которой заявил японский математик Синъити Мотидзуки ; его доказательство отличается исключительной сложностью. В настоящее время в математическом сообществе нет ясного консенсуса в отношении его работ .

Некоторые вариации и обобщения

2682440 4 + 15365639 4 + 18796760 4 = 20615673 4 . {\displaystyle 2682440^{4}+15365639^{4}+18796760^{4}=20615673^{4}.}

Позднее были найдены и другие решения; простейшее из них:

95800 4 + 217519 4 + 414560 4 = 422481 4 . {\displaystyle 95800^{4}+217519^{4}+414560^{4}=422481^{4}.}

Ещё одним популярным обобщением теоремы Ферма является гипотеза Била , сформулированная в 1993 году американским математиком-любителем, пообещавшим за её доказательство или опровержение 1 млн долларов США.

«Ферматисты»

Простота формулировки теоремы Ферма (доступная в понимании даже школьнику), а также сложность единственного известного доказательства (или неведение о его существовании), вдохновляют многих на попытки найти другое, более простое, доказательство. Людей, пытающихся доказать теорему Ферма элементарными методами, называют «ферматистами » или «ферматиками». Ферматисты зачастую не являются профессионалами и допускают ошибки в арифметических действиях или логических выводах , хотя некоторые представляют весьма изощрённые «доказательства», в которых трудно найти ошибку.

Доказывать теорему Ферма в среде любителей математики было настолько популярно, что в 1972 году журнал «Квант» , публикуя статью о теореме Ферма, сопроводил её следующей припиской : «Редакция „Кванта“ со своей стороны считает необходимым известить читателей, что письма с проектами доказательств теоремы Ферма рассматриваться (и возвращаться) не будут».

Немецкому математику Эдмунду Ландау очень докучали «ферматисты». Чтобы не отвлекаться от основной работы, он заказал несколько сот бланков с шаблонным текстом, сообщающим, что на определённой строке на некоторой странице находится ошибка, при этом находить ошибку и заполнять пробелы в бланке он поручал своим аспирантам.

Примечательно, что отдельные ферматисты добиваются публикации своих (неверных) «доказательств» в ненаучной прессе, которая раздувает их значение до научной сенсации . Впрочем, иногда такие публикации появляются и в уважаемых научных изданиях , как правило, с последующими опровержениями . Среди других примеров:

Теорема Ферма в культуре и искусстве

Великая теорема Ферма стала символом труднейшей научной проблемы и в этом качестве часто упоминается в беллетристике. Далее перечислены некоторые произведения, в которых теорема не просто упомянута, но является существенной частью сюжета или идеологии произведения.

  • В рассказе Артура Порджеса «Саймон Флэгг и дьявол» профессор Саймон Флегг обращается за доказательством теоремы к дьяволу. По этому рассказу снят игровой научно-популярный фильм «Математик и чёрт» (СССР, , производство Центрнаучфильм, творческое объединение «Радуга», режиссёр Райтбурт).
  • А. П. Казанцев в романе «Острее шпаги» в 1983 году предложил оригинальную версию отсутствия доказательства самого Пьера Ферма.
  • В телесериале «Звёздный Путь » капитан космического корабля Жан-Люк Пикар был озадачен разгадкой Великой теоремы Ферма во второй половине XXIV века . Таким образом, создатели фильма предполагали, что решения у Великой теоремы Ферма не будет в ближайшие 400 лет. Серия «Рояль » с этим эпизодом была снята в 1989 году , когда Эндрю Уайлс был в самом начале своих работ. В действительности решение было найдено всего спустя пять лет.
  • В посвящённой Хэллоуину 1995 года серии «Симпсонов » двумерный Гомер Симпсон случайно попадает в третье измерение. Во время его путешествия в этом странном мире в воздухе парят геометрические тела и математические формулы, включая неверное равенство 1782 12 + 1841 12 = 1922 12 {\displaystyle 1782^{12}+1841^{12}=1922^{12}} . Калькулятор с точностью не более 10 значащих цифр подтверждает это равенство: 1782 12 + 1841 12 = 2 541 210 258 614 589 176 288 669 958 142 428 526 657 ≈ 2,541 210 259 ⋅ 10 39 , 1922 12 = 2 541 210 259 314 801 410 819 278 649 643 651 567 616 ≈ 2,541 210 259 ⋅ 10 39 . {\displaystyle {\begin{array}{cl}1782^{12}+1841^{12}&=2\,541\,210\,258\,614\,589\,176\,288\,669\,958\,142\,428\,526\,657\approx 2{,}541\,210\,259\cdot 10^{39},\\1922^{12}&=2\,541\,210\,259\,314\,801\,410\,819\,278\,649\,643\,651\,567\,616\approx 2{,}541\,210\,259\cdot 10^{39}.\end{array}}}
Тем не менее, даже без вычисления точных значений легко видеть, что равенство неверно: левая часть - нечётное число , а правая часть - чётное.
  • В первом издании «Искусства программирования » Дональда Кнута теорема Ферма приведена в качестве упражнения с математическим уклоном в самом начале книги и оценена максимальным числом (50) баллов, как «исследовательская проблема, которая (насколько это было известно автору в момент написания) ещё не получила удовлетворительного решения. Если читатель найдет решение этой задачи, его настоятельно просят опубликовать его; кроме того, автор данной книги будет очень признателен, если ему сообщат решение как можно быстрее (при условии, что оно правильно)». В третьем издании книги это упражнение уже требует знаний высшей математики и оценивается лишь в 45 баллов.
  • В книге Стига Ларссона «Девушка, которая играла с огнём » главная героиня Лисбет Саландер, обладающая редкими способностями к аналитике и фотографической памятью, в качестве хобби занята доказательством Великой теоремы Ферма, на которую она наткнулась, читая фундаментальный труд «Измерения в математике», в котором приводится и доказательство Эндрю Уайлса. Лисбет не хочет изучать готовое доказательство, а главным интересом становится поиск собственного решения. Поэтому всё своё свободное время она посвящает самостоятельному поиску «замечательного доказательства» теоремы великого француза, но раз за разом заходит в тупик. В конце книги Лисбет находит доказательство, которое не только совершенно отлично от предложенного Уайлсом, но и является настолько простым, что сам Ферма мог бы его найти. Однако после ранения в голову она его забывает, и Ларссон не приводит никаких подробностей этого доказательства.
  • Мюзикл «Последнее танго Ферма», изданный , создан в 2000 году Джошуа Розенблюмом (англ. Joshua Rosenblum ) и Джоан Лесснер по мотивам реальной истории Эндрю Уайлса. Главный герой по имени Дэниел Кин завершает доказательство теоремы, а дух самого Ферма старается ему помешать .
  • За несколько дней до своей смерти Артур Кларк успел отрецензировать рукопись романа «Последняя Теорема », над которой он трудился в соавторстве с Фредериком Полом . Книга вышла уже после смерти Кларка.

Примечания

  1. Ферма теорема // Математическая энциклопедия (в 5 томах) . - М. : Советская Энциклопедия , 1985. - Т. 5.
  2. Diophantus of Alexandria. Arithmeticorum libri sex, et de numeris multangulis liber unus. Cum commentariis C.G. Bacheti V.C. & observationibus D.P. de Fermat senatoris Tolosani. Toulouse, 1670, pp. 338-339.
  3. Fermat a Carcavi. Aout 1659. Oeuvres de Fermat. Tome II. Paris: Tannery & Henry, 1904, pp. 431-436.
  4. Ю. Ю. Мачис. О предполагаемом доказательстве Эйлера // Математические заметки. - 2007. - Т. 82 , № 3 . - С. 395-400 . Английский перевод: J. J. Mačys. On Euler’s hypothetical proof (англ.) // Mathematical Notes : journal. - 2007. - Vol. 82 , no. 3-4 . - P. 352-356 . - DOI :10.1134/S0001434607090088 .
  5. Давид Гильберт. Математические проблемы :

    Проблема доказательства этой неразрешимости являет разительный пример того, какое побуждающее влияние на науку может оказать специальная и на первый взгляд малозначительная проблема. Ибо, побуждённый задачей Ферма, Куммер пришёл к введению идеальных чисел и к открытию теоремы об однозначном разложении чисел в круговых полях на идеальные простые множители - теоремы, которая теперь, благодаря обобщениям на любую алгебраическую числовую область, полученным Дедекиндом и Кронекером , является центральной в современной теории чисел и значение которой выходит далеко за пределы теории чисел в область алгебры и теории функций.

  6. Соловьев Ю.П. Гипотеза Таниямы и последняя теорема Ферма // Соросовский образовательный журнал . - ISSEP, 1998. - Т. 4 , № 2 . - С. 135-138 .
  7. Wiles, Andrew. Modular elliptic curves and Fermat’s last theorem (англ.) // Annals of Mathematics : journal. - 1995. - Vol. 141 , no. 3 . - P. 443-551 . (англ.)

Лекция 6. Применение производных к исследованию функций

Если функция f (x ) имеет производную в каждой точке отрезка [а , b ], то ее поведение можно исследовать с помощью производной f" (х ).

Рассмотрим основные теоремы дифференциального исчисления, лежащие в основе приложений производной.

Теорема Ферма

Теорема (Ферма) (о равенстве нулю производной ). Если функция f (x ), дифференцируема на интервале (a , b ) и достигает наибольшего или наименьшего значения в точке с є (a , b ), тогда производная функции в этой точке равна нулю , т.е. f" (с ) = 0.

Доказательство . Пусть функция f (x ) дифференцируема на интервале (a , b ) и в точке х = с принимает наибольшее значение M при с є (a , b ) (рис. 1), т.е.

f (с ) ≥ f (x ) или f (x ) – f (c ) ≤ 0 или f (с + Δх ) – f (с ) ≤ 0.

Производная f" (x ) в точке х = с : .

Если x > c , Δх > 0 (т.е. Δх → 0 справа от точки с ), то и поэтому f" (с ) ≤ 0.

Если x < с , Δх < 0 (т.е. Δх → 0 слева от точки с ), то , откуда следует, что f" (с ) ≥ 0.

По условию f (x ) дифференцируема в точке с , следовательно, ее предел при x с не зависит от выбора направления приближения аргумента x к точке с , т.е. .

Получаем систему , из которой следует f" (с ) = 0.

В случае, когда f (с ) = т (т.е. f (x ) принимает в точке с наименьшее значение), доказательство аналогичное. Теорема доказана.

Геометрический смысл теоремы Ферма : в точке наибольшего или наименьшего значения, достигаемого внутри промежутка, касательная к графику функции параллельна оси абсцисс.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама