THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Имеется целый ряд типов электромагнитного излучения, начиная с радиоволн и заканчивая гамма-лучами. Электромагнитные лучи всех типов распространяются в вакууме со скоростью света и отличаются друг от друга только длинами волн

1859 спектроскопия

1864 уравнения максвелла

1864 СПЕКТР

ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

1900 излучение

Черного тела

После появления уравнений максвелла стало ясно, что они предсказывают существование неизвестного науке природного явления - поперечных электромагнитных волн, представляющих собой распространяющиеся в пространстве со скоростью света колебания взаимосвязанных электрического и магнитного полей. Сам Джеймс Кларк Максвелл первым и указал научному сообществу на это следствие из выведенной им системы уравнений. В этом преломлении скорость распространения электромагнитных волн в вакууме оказалась столь важной и фундаментальной вселенской константой, что ее обозначили отдельной буквой с в отличие от всех прочих скоростей, которые принято обозначать буквой v.

Сделав это открытие, Максвелл сразу же определил, что видимый свет является «всего лишь» разновидностью электромагнитных волн. К тому времени были известны длины световых волн видимой части спектра - от 400 нм (фиолетовые лучи) до 800 нм (красные лучи). (Нанометр - единица длины, равная одной миллиардной метра, которая в основном используется в атомной физике и физике лучей; 1 нм = 10 -9 м.) Всем цветам радуги соответствуют различные длины волн, лежащие в этих весьма узких пределах. Однако в уравнениях Максвелла не содержалось никаких ограничений на возможный диапазон длин электромагнитных волн. Когда стало ясно, что должны существовать электромагнитные волны самой разной длины, фактически сразу же было выдвинуто сравнение по поводу того, что человеческий глаз различает столь узкую полосу их длин и частот: человека уподобили слушателю симфонического концерта, слух которого способен улавливать только скрипичную партию, не различая всех остальных звуков.



Вскоре после предсказания Максвеллом существования электромагнитных волн других диапазонов спектра последовала серия открытий, подтвердивших его правоту. Первыми в 1888 году были открыты радиоволны - сделал это немецкий физик Генрих Герц (Heinrich Hertz, 1857-1894). Единственная разница между радиоволнами и светом состоит в том, что длина радиоволн может колебаться в диапазоне от нескольких дециметров до тысяч километров. Согласно теории Максвелла, причиной возникновения электромагнитных волн является ускоренное движение электрических зарядов. Колебания электронов под воздействием переменного электрического напряжения в антенне радиопередатчика создают электромагнитные волны, распространяющиеся в земной атмосфере. Все другие типы электромагнитных волн также возникают в результате различных видов ускоренного движения электрических зарядов.

Подобно световым волнам, радиоволны могут практически без потерь распространяться на большие расстояния в земной атмосфере, и это делает их полезнейшими носителями закодированной информации. Уже в начале 1894 года-всего через пять с небольшим лет после открытия радиоволн - итальянский инженер-физик Гуль-ельмо Маркони (Guglielmo Marconi, 1874-1937) сконструировал

10" 10" 10* 10" 1

10 10* 10*

1СГ 5 10* 10"" 10^ 10*

- 10"" Рентгеновские

лучи - 10 -і*

- 10""

- 10"

- 1(Г"

- 1<Г"

Гамма-лучи

Электромагнитные волны образуют сплошной спектр длин волн и энергий (частот), подразделяемый на условные диапазоны - от радиоволн до гамма-лучей

первый работающий беспроволочный телеграф - прообраз современного радио, - за что в 1909 году был удостоен Нобелевской премии.

После того как было впервые экспериментально подтверждено предсказываемое уравнениями Максвелла существование электромагнитных волн за пределами видимого спектра, остальные ниши спектра заполнились весьма быстро. Сегодня открыты электромагнитные волны всех без исключения диапазонов, и практически все они находят широкое и полезное применение в науке и технике. Частоты волн и энергии соответствующих им квантов электромагнитного излучения (см. постоянная планка) возрастают с уменьшением длины волны. Совокупность всех электромагнитных волн образует так называемый сплошной спектр электромагнитного излучения. Он подразделяется на следующие диапазоны (в порядке увеличения частоты и уменьшения длины волн):

Радиоволны

Как уже отмечалось, радиоволны могут значительно различаться по длине - от нескольких сантиметров до сотен и даже тысяч километров, что сопоставимо с радиусом земного шара (около 6400 км). Волны всех радиодиапазонов широко используются в технике - дециметровые и ультракороткие метровые волны применяются для телевещания и радиовещания в диапазоне ультракоротких волн с частотной модуляцией (УКВ/БЫ), обеспечивая высокое качество приема сигнала в пределах зоны прямого распространения волн. Радиоволны метрового и километрового диапазона применяются для радиовещания и радиосвязи на больших расстояниях с использованием амплитудной модуляции (АМ), которая, хотя и в ущерб качеству сигнала, обеспечивает его передачу на сколь угодно большие расстояния в пределах Земли благодаря отражению волн от ионосферы планеты. Впрочем, сегодня этот вид связи отходит в прошлое благодаря развитию спутниковой связи. Волны дециметрового диапазона не могут огибать земной горизонт подобно метровым волнам, что ограничивает зону приема областью прямого распространения, которая, в зависимости от высоты антенны и мощности передатчика, составляет от нескольких до нескольких десятков километров. И тут на помощь приходят спутниковые ретрансляторы, берущие на себя ту роль отражателей радиоволн, которую в отношении метровых волн играет ионосфера.

Микроволны

Микроволны и радиоволны диапазона сверхвысоких частот (СВЧ) имеют длину от 300 мм до 1 мм. Сантиметровые волны, подобно дециметровым и метровым радиоволнам, практически не поглощаются атмосферой и поэтому широко используются в спутни

ковой и сотовой связи и других телекоммуникационных системах. Размер типовой спутниковой тарелки как раз равен нескольким длинам таких волн.

Более короткие СВЧ-волны также находят множество применений в промышленности и в быту. Достаточно упомянуть про микроволновые печи, которыми сегодня оснащены и промышленные хлебопекарни, и домашние кухни. Действие микроволновой печи основано на быстром вращении электронов в устройстве, которое называется клистрон. В результате электроны излучают электромагнитные СВЧ-волны определенной частоты, при которой они легко поглощаются молекулами воды. Когда вы помещаете еду в микроволновую печь, молекулы воды, содержащиеся в еде, поглощают энергию микроволн, движутся быстрее и таким образом разогревают еду. Иными словами, в отличие от обычной духовки или печи, где еда разогревается снаружи, микроволновая печь разогревает ее изнутри.

Инфракрасные лучи

Эта часть электромагнитного спектра включает излучение с длиной волны от 1 миллиметра до восьми тысяч атомных диаметров (около 800 нм). Лучи этой части спектра человек ощущает непосредственно кожей - как тепло. Если вы протягиваете руку в направлении огня или раскаленного предмета и чувствуете жар, исходящий от него, вы воспринимаете как жар именно инфракрасное излучение. У некоторых животных (например, у норных гадюк) есть даже органы чувств, позволяющие им определять местонахождение теплокровной жертвы по инфракрасному излучению ее тела.

Поскольку большинство объектов на поверхности Земли излучает энергию в инфракрасном диапазоне волн, детекторы инфракрасного излучения играют немаловажную роль в современных технологиях обнаружения. Инфракрасные окуляры приборов ночного видения позволяют людям «видеть в темноте», и с их помощью можно обнаружить не только людей, но и технику, и сооружения, нагревшиеся за день и отдающие ночью свое тепло в окружающую среду в виде инфракрасных лучей. Детекторы инфракрасных лучей широко используются спасательными службами, например для обнаружения живых людей под завалами после землетрясений или иных стихийных бедствий и техногенных катастроф.

Видимый свет

Как уже говорилось, длины электромагнитных волн видимого светового диапазона колеблются в пределах от восьми до четырех тысяч атомных диаметров (800-400 нм). Человеческий глаз представляет собой идеальный инструмент для регистрации и анализа электромагнитных волн этого диапазона. Это обусловлено двумя причинами. Во-первых, как отмечалось, волны видимой части спектра практически беспрепятственно распространяются в прозрачной для них атмосфере. Во-вторых, температура поверхности Солнца (около 5000°С) такова, что пик энергии солнечных лучей приходится именно на видимую часть спектра. Таким образом, наш главный источник энергии излучает огромное количество энергии именно в видимом световом диапазоне, а окружающая нас среда в значительной мере прозрачна для этого излучения. Неудивительно поэтому, что человеческий глаз в процессе эволюции сформировался таким образом, чтобы улавливать и распознавать именно эту часть спектра электромагнитных волн.

Хочу еще раз подчеркнуть, что ничего особенного с физической точки зрения в диапазоне видимых электромагнитных лучей нет. Он представляет собой всего лишь узкую полоску в широком спектре излучаемых волн (см. рисунок). Для нас он столь важен лишь постольку, поскольку человеческий мозг оснащен инструментом для выявления и анализа электромагнитных волн именно этой части спектра.

Ультрафиолетовые лучи

К ультрафиолетовым лучам относят электромагнитное излучение с длиной волны от нескольких тысяч до нескольких атомных диаметров (400-10 нм). В этой части спектра излучение начинает оказывать влияние на жизнедеятельность живых организмов. Мягкие ультрафиолетовые лучи в солнечном спектре (с длинами волн, приближающимися к видимой части спектра), например, вызывают в умеренных дозах загар, а в избыточных - тяжелые ожоги. Жесткий (коротковолновой) ультрафиолет губителен для биологических клеток и поэтому используется, в частности, в медицине для стерилизации хирургических инструментов и медицинского оборудования, убивая все микроорганизмы на их поверхности.

Все живое на Земле защищено от губительного влияния жесткого ультрафиолетового излучения озоновым слоем земной атмосферы, поглощающим большую часть жестких ультрафиолетовых лучей в спектре солнечной радиации (см. озоновая дыра). Если бы не этот естественный щит, жизнь на Земле едва ли бы вышла на сушу из вод Мирового океана. Однако, несмотря на защитный озоновый слой, какая-то часть жестких ультрафиолетовых лучей достигает поверхности Земли и способна вызвать рак кожи, особенно у людей, от рождения склонных к бледности и плохо загорающих на солнце.

Рентгеновские лучи

Излучение в диапазоне длин волн от нескольких атомных диаметров до нескольких сот диаметров атомного ядра называется рентгеновским. Рентгеновские лучи проникают сквозь мягкие ткани организма и поэтому незаменимы в медицинской диагнос

тике. Как и в случае с радиоволнами, временной разрыв между их открытием в 1895 году и началом практического применения, ознаменовавшимся получением в одной из парижских больниц первого рентгеновского снимка, составил считанные годы. (Интересно отметить, что парижские газеты того времени настолько увлеклись идеей, что рентгеновские лучи могут проникать сквозь одежду, что практически ничего не сообщали об уникальных возможностях их применения в медицине.)

Гамма-лучи

Самые короткие по длине волны и самые высокие по частоте и энергии лучи в электромагнитном спектре - это у-лучи (гамма-лучи). Они состоят из фотонов сверхвысоких энергий и используются сегодня в онкологии для лечения раковых опухолей (а точнее, для умерщвления раковых клеток). Однако их влияние на живые клетки столь губительно, что при этом приходится соблюдать крайнюю осторожность, чтобы не причинить вреда окружающим здоровым тканям и органам.

В заключение важно еще раз подчеркнуть, что, хотя все описанные типы электромагнитного излучения проявляют себя внешне по-разному, по своей сути они являются близнецами. Все электромагнитные волны в любой части спектра представляют собой распространяющиеся в вакууме или среде поперечные колебания электрического и магнитного полей, все они распространяются в вакууме со скоростью света с и отличаются друг от друга лишь длиной волны и, как следствие, энергией, которую они переносят. Остается только добавить, что названные мною границы диапазонов носят достаточно условный характер (и в других книгах вам, вполне вероятно, попадутся несколько иные значения граничных длин волн). В частности, микроволновые излучения с большими длинами волн нередко и справедливо относятся к сверхвысокочастотному диапазону радиоволн. Отсутствуют четкие границы и между жестким ультрафиолетовым и мягким рентгеновским, а также между жестким рентгеновским и мягким гамма-излучением.

Спектроскопия

Наличие атомов химических элементов в веществе можно выявить по присутствию характерных линий в спектре излучения или поглощения

Электромагнитный спектр

Электромагни́тный спектр - совокупность всех диапазонов частот электромагнитного излучения .

Длина волны - частота - энергия фотона

В качестве спектральной характеристики электромагнитного излучения используют следующие величины :

  • Частоту колебаний - шкала частот приведена в отдельной статье;
  • Энергию фотона (кванта электромагнитного поля).

Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Зеркал и линз для γ-лучей не существует.

Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты - электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).

Рентгеновское излучение

  • от 0,1 нм = 1 Å (12 400 эВ) до 0,01 нм = 0,1 Å (124 000 эВ) - жёсткое рентгеновское излучение . Источники: некоторые ядерные реакции , электронно-лучевые трубки .
  • от 10 нм (124 эВ) до 0,1 нм = 1 Å (12 400 эВ) - мягкое рентгеновское излучение . Источники: электронно-лучевые трубки, тепловое излучение плазмы.

Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа.

Ультрафиолетовое излучение

Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)

Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ближний NUV 400 - 300 3,10 - 4,13 эВ
Средний MUV 300 - 200 4,13 - 6,20 эВ
Дальний FUV 200 - 122 6,20 - 10,2 эВ
Экстремальный EUV, XUV 121 - 10 10,2 - 124 эВ
Вакуумный VUV 200 - 10 6,20 - 124 эВ
Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 - 315 3,10 - 3,94 эВ
Ультрафиолет B (средний диапазон) UVB 315 - 280 3,94 - 4,43 эВ
Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 - 100 4,43 - 12,4 эВ

Оптическое излучение

Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

  • от 30 ГГц до 300 ГГц - микроволны .
  • от 3 ГГц до 30 ГГц - сантиметровые волны (СВЧ) .
  • от 300 МГц до 3 ГГц - дециметровые волны .
  • от 30 МГц до 300 МГц - метровые волны.
  • от 3 МГц до 30 МГц - короткие волны .
  • от 300 кГц до 3 МГц - средние волны .
  • от 30 кГц до 300 кГц - длинные волны .
  • от 3 кГц до 30 кГц - сверхдлинные (мириаметровые) волны .

В отличие от оптического диапазона, исследование спектра в радиодиапазоне проводится не физическим разделением волн, а методами обработки сигналов .

См. также


Wikimedia Foundation . 2010 .

  • Толковый англо-русский словарь по нанотехнологии. - М. - кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Спектр частот электромагнитного импульса… … Морской словарь
  • Электромагнитный импульс ядерного взрыва - кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма излучения и нейтронов, испускаемых при ядерном взрыве с атомами окружающей среды. Спектр частей Э.м.и. соответствует диапазону… … Гражданская защита. Понятийно-терминологический словарь

    Оптический спектр

    Световой спектр - Солнечный свет после прохождения через треугольную стеклянную призму Спектр (лат. spectrum от лат. spectare смотреть) в физике распределение значений физической величины (обычно энергии, частоты или массы), а также графическое представление… … Википедия

    Импульс электромагнитный - кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Спектр частот И.э.м. выводит из строя или… … Словарь черезвычайных ситуаций

СПЕКТРАЛЬНЫЕ МЕТОДЫ АНАЛИЗА

Спектральные методы анализа основаны на регистрации спектров испускания или поглощения атомов и молекул и измерении интенсивности электромагнитного излучения в узком энергетическом диапазоне. Методы спектрального анализа подразделяются на радиочастотную, оптическую, рентгеновскую и др. виды спектрометрии в зависимости от того, в какой области электромагнитного спектра проводятся измерения.

Электромагнитное излучение может быть охарактеризовано либо волновым , либо энергетическим параметрами. Все эти величины взаимосвязаны и выбор той или иной величины определяется удобствами при работе.

Волновой параметр выражается длиной волны l (м, см, мкм, нм или Å), частотой колебаний n (с -1 или герц, 1 Гц = 1 с -1), либо волновым числом uu (м -1 , см -1). В некоторых книгах волновое число обозначают знаком . Частота электромагнитных колебаний n связана с длиной волны l соотношением n = c/l, где с - скорость света в вакууме, равная 2.997925∙10 8 м/с (приближенно 3∙10 8 м/с). В спектроскопии принято называть частотой также и волновое число u = 1/l , показывающее, сколько длин волн умещается на интервале 1 см (т.е. если l = 10 -5 м = 10-3 см, то u = 1000 см -1). В нарушение требования об использовании системы СИ волновые числа измеряют по-прежнему в обратных сантиметрах (см -1). 1 см ≡ 11.9631 Дж /моль.

Частота линии спектра поглощения связана с разностью энергий ΔЕ возбужденного и основного состояний:

ΔЕ= hν = Е возб. - Е осн.,

где h – константа Планка (h = 6.626·10 -34 Дж·с).

Как следует из вышеприведенной формулы кванты излучения с более короткой длиной волны (с более высокой частотой) имеют более высокую энергию.

Рис.1. Схема квантования энергии электрона в атомарном водороде (на схеме не указаны р - и d – подуровни). Энергия электрона с главным квантовым числом n = 1 соответствует основному состоянию атома (1s 1). Другие состояния (2s 1 , 3s 1 , 4s 1 , ….) – возбужденные. Переход электрона из возбужденных состояний 2s 1 , 3s 1 , 4s 1 , … на уровень 1s 1 соответствует серии Лаймана, из состояний 3s 1 , 4s 1 , … на уровень 2s 1 - серии Бальмера и т.д.

Рис. 2. Спектр испускания атомарного водорода - светлые линии и полосы на черном фоне. черные линии на белом фоне. Спектры поглощения выглядят иначе – черные линии и полосы (на том же самом месте) на белом фоне. белые линии и полосы на черном фоне. Расширение линий связано с

Спектр электромагнитного излучения

Е кванта →

10 5 3∙10 -4 8∙10 -7 4∙10 -7 10 -8 10 -12 l, м
Радиочастотная область Микроволновая область Инфракрасная область Видимое излучение Ультрафиолетовая область Рентгеновское излучение g - излучение космические лучи
Вращательный спектр К-вр. Электронный спектр Изменения Изменения
Изменение энергетического состояния спинов электронов (ЭПР - спектроскопия). Изменение энергетического состояния спинов ядер (ЯМР - спектроскопия) Колебательно - вращательный спектр (колебания атомов в молекуле). ИК - спектроскопия Изменения в энергетическом состоянии внешних (валентных) электронов (Спектроскопия в УФ и видимой области, КР - спектроскопия) в энергетическом состоянии внутренних электронов атомов (Рентгеноско-пия) в энергетическом состоянии ядер (ядерно- физические методы анализа)


Электромагнитный спектр простирается от жесткого g- излучения с очень короткой длиной волны до длинных радиоволн. Каждая из областей спектра связана с определенными видами внутримолекулярных движений, процессами в атомах и ядрах. При поглощении или испускании квантов света изменяется энергия электронов в электронных оболочках атомов и молекул, энергия колебания атомных ядер в молекуле и энергия вращения молекулы.

Все виды внутримолекулярных движений взаимосвязаны, но для каждого из них существует определенный набор допустимых (разрешенных) значений энергии.

1.1.1 Молекулярные спектры испускания, поглощения и комбинационного (см.п 1.4) рассеяния

Современное учение о спектрах электромагнитного излучения базируется на квантовой теории, согласно которой атомная система является устойчивой лишь в определенных стационарных состояниях, соответствующих некоторой дискретной последовательности значений энергии. Переход между двумя квантовыми состояниями 1 « 2 с энергиями Е 1 и Е 2 приводит к поглощению (абсорбции), ‌E 1 < E 2‌ , или испусканию (эмиссии), ‌E 1 > E 2‌ , энергии в виде электромагнитного излучения с частотой n, определяемой уравнением Бора:

DE =‌ ‌|E 1 - E 2‌ | ‌‌= hn,

где E 1 и E 2 - энергия начального и конечного состояний соответственно, hh - постоянная Планка, n - частота поглощаемого или испускаемого излучения. h = 6.616 10 -34 Дж∙с

Согласно уравнению частот Бора в спектре возникает линия с частотой (с -1)

n = |E 1 - E 2‌ | /h

или с волновым числом (см -1)

u = |E 1 - E 2‌ | /hc.

Переходы с нижнего энергетического уровня на верхний порождают спектр поглощения (абсорбции), с верхнего на нижний - спектр испускания (эмиссии) (рис.2).

В оптико - спектрометрических методах анализа используют дискретность энергетических уровней молекул и испускание или поглощение излучения, которое связано с переходом молекулы или атома с одного энергетического уровня на другой (Рис.1). Энергию квантов света в спектроскопии выражают в обратных сантиметрах, учитывая, что 1 см -1 ≡ 11.9631 Дж/моль. Наиболее высокую энергию имеют кванты, возникающие при электронных переходах (от 40 до 400 кДж/моль), затем следуют колебательные кванты (от 4 до 40 кДж/моль) и затем вращательные, с самой малой энергией (0.4 - 4 кДж/моль). Электронный переход одновременно сопровождается колебательными и вращательными переходами, т.е. представляет собой электронно - колебательно - вращательный переход. (рис.3).

Рис. 31. Схема энергетических уровней двухатомной молекулы: Е е - уровни энергии электронов; Е v – уровни колебательной энергии (vibration – вибрация, колебание): Е r – уровни вращательной энергии (rotation –вращение): v evr – переходы, соответствующие электронно – колебательно - вращательному спектру: v v r - переходы, соответствующие колебательно-вращательному спектру; v r – переходы, соответствующие вращательному спектру. [Золотов. Основы аналитической химии. Книга 2. с.207]

Энергия кванта такого перехода выражается формулой

e эл.-кол.-вр = e эл + e кол + e вр = hn эл + hn кол + hn вр,

а частота соответствующей линии в спектре равна сумме частот (это одна линия):

n эл.-кол.-вр = n эл + n кол + n вр.

Для краткости электронно – колебательно - вращательный спектр называют просто электронным спектром. Он состоит из множества серий полос в УФ и видимой области. Каждая серия отвечает одному электронныому переходаму с более высоких уровней на какой-либо ниже расположенный (рис.1). Энергия квантов, возбуждающих такие переходы, повторим, лежит в области 40 ÷ 400 кДж/моль. Волновые числаЧастоты νu квантов электронныхого переходова лежат в диапазоне (3.3 ÷ 33.3)∙10 3 см -1 , что соответствует длинам волнт.е. l от 0.3 до 3 мкм.

Кванты более низкой энергии в области 4 ÷ 40 кДж/моль отвечают переходам между колебательными уровнями. При этом неизбежно происходит и изменение вращательных состояний, еще более низких по энергии, и возникает колебательно-вращательный спектр. Энергия перехода и частота линий в колебательно-вращательном спектре связаны соотношениями:

e кол.-вр = e кол + e вр = hn кол + hn вр.

n кол.-вр = n кол + n вр.

При данном колебательном переходе с частотой n кол возникает полоса, отдельные линии которой отвечают разным комбинациям слагаемых в сумме n кол + n вр. Волновые числа u Частоты колебательных квантов n простираются от 30 до 4000 см -1 (l от 2.5 мкм до 0.3 мм). Это далекая инфракрасная область, вплотную смыкающаяся с областью миллиметровых радиоволн.

Кванты еще более низкой энергии (0.4 ÷ 4 кДж/моль) могут вызывать только переходы между вращательными уровнями и дают начало чисто вращательному спектру. Энергии перехода и частоты во вращательном спектре связаны соотношением

e вр = hn вр.

Каждая линия в таком спектре имеет частоту n вр , отвечающую i -му вращательному переходу. Вращательный спектр имеет частоты порядка 10 -1 ÷ 1 см -1 и простирается в область субмиллиметровых (МВ - микроволновая область) и сантиметровых (СВЧ - сверхвысокочастотная область) радиоволн.

Рис.3.Форма полос в молекулярных спектрах: а - гладкий колокообразный контур; б – полоса с выраженной тонкой структурой. Характеристики полосы: I max , v max , Δv. Спектральная полоса –это совокупность близко расположенных спектральных линий, образующихся в результате наложения на электронный переход сопутствующих ему колебательных и вращательных переходов.

Контур спектральной полосы в молекулярных спектрах может быть гладким колокообразным или обнаруживать тонкую структуру (рис.3). Полосу без разрешенной тонкой структуры принято характеризовать, как и спектральную линию, тремя параметрами: частотой n max (длиной волны l max ); значением максимальной интенсивности (пиковой интенсивности) I max ; шириной Δv λ ). Ширина полос в колебательно-вращательном спектре может достигать нескольким десятков обратных сантиметров, а в электронном – несколько тысяч обратных сантиметров.

1.1.2 Возбуждение спектра

Энергетическое воздействие на вещество может осуществляться тепловым, электромагнитным, химическим и другими путями. Все эти воздействия приводят к испусканию веществом электромагнитных излучений. Энергия излучается в виде линейчатого спектра, характеризующегося дискретными значениями длин волн. При прохождении излучения сплошного спектра через вещество, напротив, происходит поглощение энергии и образуется спектр поглощения, также характеризующийся дискретными значениями длин волн. Отношение интенсивностей полосы, отвечающей одному и тому же переходу m « n , в спектре поглощения (абсорбции) I a и спектре испускания (эмиссии) I e различно и зависит от частоты перехода. Теория приводит к соотношению

т.е. интенсивность испускания I e во много раз превосходит интенсивность поглощения I a в области высоких частот . Поэтому спектры испускания удобнее изучатьизучают в видимой и ультрафиолетовой области. В области малых частот (ИК- и СВЧ- области) удобнее изучать спектры поглощения. На этих частотах, наоборот, интенсивнее спектры абсорбции.

С другой стороны, спектры испускания известны для атомов (изучены атомные спектры) и лишь сравнительно небольшого числа достаточно простых молекул. Поэтому молекулярные спектры изучают главным образом как спектры поглощения , когда излучение источника сплошного спектра (например, лампы накаливания) проходит через кювету, наполненную раствором вещества. Так как каждый структурный элемент молекулы поглощает энергию только в характерной для него области, то определив частоту и количественно оценив интенсивность поглощаемого излучения можно установить структуру соединения (качественный анализ) и определить количество исследуемого вещества (количественный анализ).

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Радиоволны. При колебаниях, происходящих с частотами от 10 5 до 10 12 Гц, возникают электромагнитные излучения, длины волн которых лежат в интервале от нескольких километров до нескольких миллиметров. Этот участок шкалы электромагнитных излучений относится к диапазону радиоволн. Радиоволны применяются для радиосвязи, телевидения, радиолокации.

Инфракрасное излучение. Электромагнитные излучения с длиной волны, меньшей 1-2 мм, но большей 8*10 -7 м, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением.

Область спектра за красным его краем впервые экспериментально была исследована в 1800г. английским астрономом Вильямом Гершелем (1738 – 1822 гг.). Гершель поместил термометр с зачерненным шариком за красный край спектра и обнаружил повышение температуры. Шарик термометра нагревался излучением, невидимым глазом. Это излучение назвали инфракрасными лучами.

Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания.

С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

Видимый свет. К видимому свету (или просто свету) относятся излучения с длиной волны примерно от 8*10-7 до 4*10-7 м, от красного до фиолетового света.

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Свет является обязательным условием развития зеленых растений и, следовательно, необходимым условием для существования жизни на Земле.

Ультрафиолетовое излучение . В 1801 году немецкий физик Иоганн Риттер (1776 – 1810), исследуя спектр, открыл, что за его фиолетовым краем имеется область, создаваемая невидимыми глазом лучами. Эти лучи воздействуют на некоторые химические соединения. Под действием этих невидимых лучей происходит разложения хлорида серебра, свечение кристаллов сульфида цинка и некоторых других кристаллов.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением. К ультрафиолетовому излучению относят электромагнитные излучения в диапазоне длин волн от 4*10 -7 до 1*10 -8 м.

Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека – загару.

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Рентгеновские лучи . Если в вакуумной трубке между нагретым катодом, испускающим электрон, и анодом приложить постоянное напряжение в несколько десятков тысяч вольт, то электроны будут сначала разгоняться электрическим полем, а затем резко тормозиться в веществе анода при взаимодействии с его атомами. При торможении быстрых электронов в веществе или при переходах электронов на внутренних оболочках атомов возникают электромагнитные волны с длиной волны меньше, чем у ультрафиолетового излучения. Это излучение было открыто в 1895 году немецким физиком Вильгельмом Рентгеном (1845-1923). Электромагнитные излучения в диапазоне длин волн от 10 -14 до 10 -7 м называются рентгеновскими лучами.

Рентгеновские лучи невидимы глазом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

Способность рентгеновских лучей проникать через толстые слои вещества используется для диагностики заболеваний внутренних органов человека. В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний.

Гамма-излучение . Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.

Гамма-излучение – самое коротковолновое электромагнитное излучение (l< 10 -10 м). Его особенностью являются ярко выраженные корпускулярные свойства. Поэтому гамма-излучение обычно рассматривают как поток частиц – гамма-квантов. В области длин волн от 10 -10 до 10 -14 и диапазоны рентгеновского и гамма-излучений перекрываются, в этой области рентгеновские лучи и гамма-кванты по своей природе тождественны и отличаются лишь происхождением.

Основной характеристикой электромагнитного спектра представляющего совокупность диапазонов частот является волновой процесс. В результате электромагнитный спектр можно определить по его длине волны и частоте.

Частота - как быстро волна вибрирует или идет вверх и вниз. Длина волны - это расстояние между двумя пиками. Частота и длина обратно связаны, что означает, что волны низкой частоты имеют длиннее колебания и наоборот.

Человек может видеть свет в определенном диапазоне длин колебаний и частот. Этот диапазон называется видимым спектром. Частотный диапазон видимого спектра составляет от 405 терагерц до 790 терагерц.

Типы волн и электромагнитный спектр

Электромагнитный спектр включает широкий спектр волн, который люди не могут видеть. Невидимые типы волн представляют радиоволны, инфракрасные и рентгеновские лучи. Эти типы колебаний широко применяются в различных областях науки и техники.

Если бы у человека глаза были как у гремучей змеи или совы он мог бы хорошо видеть ночью. Для того чтобы помочь пилотам увидеть в темноте или при плохой погоде в кабине устанавливается радар, обнаруживающий отражение радиоволн. И если бы глаза человека были чувствительны как лучи рентгеновской камеры люди могли бы даже видеть через органы или здания!

Свет, который могут видеть люди, это только одна часть всей электрической и магнитной энергии вокруг нашего мира. Радиоволны, Х-лучи, гамма-лучи и световые волны работают аналогичным образом. Вся вместе эта энергия называется электромагнитным спектром.

В видимом спектре цвет света зависит от частоты. представляет сложную комбинацию состоящую из многих длин. Если пропустить видимый спектр через призму создастся «радуга» путем перенаправления каждой длины волны под несколько иным углом. Порядок цветов красный, оранжевый, желтый, зеленый, синий, индиго (темно синий) и фиолетовый.

Цвета света

Что мы видим, когда наблюдаем отраженный свет от объекта. Когда свет попадает на объект несколько длин колебаний поглощаются этим объектом, а некоторые отражаются. Свет различных длин волн выглядит как разные цвета. Когда мы видим объект определенного цвета, что означает, что свет этого цвета отражается от объекта. Например, когда вы видите красную рубашку, рубашка поглощает все цвета света, за исключением красного. Частота света, который мы видим, является отражение красного и мы видим эту рубашку как красную.

Черный и белый немного отличается от других цветов. Белый — это сочетание всех цветов, поэтому когда мы видим белый, объект отражает все цвета света. Черный является противоположностью. Когда мы видим черный объект, то это означает, что почти все цвета света поглощаются.

Аддитивные цвета

Аддитивность –целое значение величины равно сумме значений его составный частей.

Аддитивные основные цвета могут быть объединены, чтобы сделать любой другой цвет. Это три цвета красный, синий и зеленый. Этот факт используется все время в технологиях, таких как компьютерные экраны и телевизоры. Объединяя только три основных вида света различными способами, можно сделать любой цвет.

Субтрактивные цвета

Субтрактивный – вычитание из равномерного белого составляющих.

Если есть белый свет и хотите вычесть цвета, чтобы получить любой другой цвет, то необходимо использовать основные субтрактивные цвета для фильтрации или удаления света определенных цветов. Первичные субтрактивные цвета - голубой, пурпурный и желтый.

Что такое электромагнитное излучение?

Световые волны и другие виды энергии, которые излучаются вызывают электромагнитное излучение. Вместе они составляют то, что называется электромагнитный спектр . Наши глаза могут видеть только ограниченную часть электромагнитного спектра - красочные радуги мы видим в солнечный, но дождливый день, когда невероятно узкая часть электромагнитного излучения преломляется в капельках дождя. Это энергия видимого света, и как радиоволны и все остальное состоит из электромагнитных волн.

Эти волнообразные формы модели электричества и магнетизма на скорости 300000 км в секунду распространяются вокруг.

Свет, который видят люди тянется в спектре от красного (самая низкая частота и большая длина волны, которую глаза могут зарегистрировать) далее оранжевый, желтый, зеленый, синий и индиго (темно синий) и фиолетовый.

Как электромагнитная волна двигается

Если бы мы могли заглянуть внутрь светового луча (или других электромагнитных волн), что можно увидеть: электрическая волна вибрирует в одном направлении, а магнитная вибрирует в перпендикулярном. Две волны вибрируют в идеальной зависимости, перпендикулярном направлении путешествуете всегда вместе.

С XIX века ученые понимают, что электричество и магнетизм являются равноправными партнерами, которые работают вместе, близко во все времена.

Какие виды энергии составляют электромагнитный спектр?

Другие виды электромагнитного излучения, которые испускают объекты

  • Радиоволны : если бы наши глаза могут видеть радиоволны, мы бы могли (в теории) смотреть ТВ программы просто глядя на небо! Длина радиоволны: 30 см – 500 м. Радиоволны охватывают огромную полосу частот варьируемой от десятков сантиметров высокой частоты до сотен метров в низкочастотном диапазоне. Электромагнитная волна больше, чем СВЧ радиоволна микроволновой печи.
  • СВЧ : такие радиоволны используются не только для приготовления пищи в микроволновой печи, но и для передачи информации в радиолокационной технике. Типичный размер: 15 см (длина карандаша).
  • Инфракрасное : просто с частотой немного короче чем красный цвет. Есть своего рода невидимый «горячий свет» называемый ИК. Хотя мы не можем видеть излучение, мы можем почувствовать путем потепления кожи, когда он попадает на наше лицо — это то, что мы думаем как излучаемое тепло. Если бы глаза человека были бы как у гремучих змей человек бы видел инфракрасное излучение, как линзы ночного видения, встроенные в наших головах. Типичная длина колебания: 0,01 мм
  • Видимый спектр о котором пояснено выше.
  • Ультрафиолетовое : это выше частоты фиолетового света, который наши глаза могут обнаружить. Солнце передает мощное ультрафиолетовое излучение, которое человек не может видеть. Вот почему человек получает загар, даже когда плавает в море или в пасмурные дни. Вот почему так важен солнцезащитный крем. Типичная длина колебания: 500 Нм (как большая бактерия).
  • Рентгеновские лучи : очень полезный тип высокочастотных волн, широко используются в медицине и безопасности. Типичный размер: 0,1 Нм (ширина атома).
  • Гамма лучи : излучаются радиоактивными веществами и опасны для жизни. Типичный размер: 0,02 Нм (ядро атома).


THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама