THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

), раздел механики, в к-ром исследуется механич. состояние тела в связи с физ. причинами, его определяющими. К. разделяется на динамику - учение о движении тел под действием сил и статику - учение о равновесии тел.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

КИНЕТИКА

В механике - раздел механики, в к-ром изучаются движение и равновесие механич. систем под действием сил. Подразделяется на динамику и статику.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Синонимы :

Смотреть что такое "КИНЕТИКА" в других словарях:

    - (греч., от kinesis движение). Наука, изучающая зависимость между движением материи и причинами, обусловливающими эти движения. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КИНЕТИКА греч., от kinesis, движение.… … Словарь иностранных слов русского языка

    - (от греч. kinetikos приводящий в движение) раздел механики, объединяющий статику и динамику … Большой Энциклопедический словарь

    КИНЕТИКА, в физике один из разделов ДИНАМИКИ. В химии раздел физической химии, рассматривающий скорость химических реакций. Изучая скорость при разных температурах и давлении, химики могут определить, как происходила реакция … Научно-технический энциклопедический словарь

    КИНЕТИКА, кинетики, мн. нет, жен. (от греч. kinetikos двигательный) (мех.). Отдел механики, обнимающий динамику и статику. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    - [нэ ], и, жен. Раздел механики, объединяющий в себе статику и динамику. | прил. кинетический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Сущ., кол во синонимов: 2 макрокинетика (1) психокинетика (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    кинетика - кинетика. Произносится [кинэтика] … Словарь трудностей произношения и ударения в современном русском языке

    кинетика - Учение о механизме и скоростях физич. и химич. процессов. Физич. к. — теория неравновесных макроскопич. процессов в системах, вывед. из состояния теплового (термодинамич.) равновесия. К физич. к. относят термодинамику неравновесных… … Справочник технического переводчика

    КИНЕТИКА - (1) физическая раз дел теоретической физики, изучающий законы протекания процессов, возникающих в системе (газах, плазме, жидкостях, твёрдых телах) при её отклонении от состоянии термодинамического равновесия (напр. диффузия, теплопроводность,… … Большая политехническая энциклопедия

    Кинетика - учение о механизме и скоростях физических и химических процессов. Физическая кинетика теория неравновесных макро скопических процессов в системах, выведенных из состояния теплового (термодинамического) равновесия. К физической кинетике … Энциклопедический словарь по металлургии

Книги

  • Кинетика фотохимических реакций , И.С. Плотников. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Воспроизведено в оригинальной авторской орфографии издания 1908 года (издательство "Москва"…
  • Кинетика частиц плазмы , Джонстон Т.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В книге изложены основные понятия кинетики частиц в плазме и их применение к выводу основных…

Что такое физическая кинетика

Определение

Физическая кинетика - составная часть статистической физики, которая изучает процессы, происходящие в неравновесных средах с точки зрения строения вещества.

Физическая кинетика использует методы квантовой или классической статистической физики, рассматривая процессы переноса энергии, импульса, заряда и вещества в газе, жидкостях, плазме и твердых телах, а также влияние на разные состояния вещества со стороны полей. Физическая кинетика включает:

  1. кинетическую теорию газов,
  2. статистическую теорию неравновесных процессов в плазме,
  3. теорию явлений переноса,
  4. кинетику магнитных процессов,
  5. теорию кинетических явлений о прохождении быстрых частиц через вещество,
  6. кинетику фазовых переходов.

Основной метод физической кинетики: решение кинетического уравнения Больцмана.

Остановимся на кинетической теории газов. Основное уравнение кинетической теории газов:

где $p$ -- давление газа, $V$- объем газа, $E_k$ -- суммарная кинетическая энергия поступательного движения n молекул газа, находящихся в объеме V, причем:

где $m_i$- масса i-й молекулы, $v_i$ -- ее скорость.

Уравнение (1) можно записать в другом виде:

где $\rho =n\cdot m_0$- плотность газа, $n=\frac{N}{V}$ -- концентрация частиц газа, $m_0$ -- масса молекулы газа, $v^2_{kv}\ $-- квадрат среднеквадратичной скорости поступательного движения газа.

Прежде чем перейти непосредственно к явлению переноса, остановимся на ряде необходимых определений.

Столкновения двух частиц характеризуется эффективным сечением соударения $\sigma$. В случае соударения молекул, имеющих диаметр d, (по модели твердых сфер) эффективное газокинетическое поперечное сечение равно площади круга с радиусом d (эффективный диаметр молекулы):

\[\sigma=\pi d^2\left(3\right).\]

Эффективное поперечное сечение зависит от энергии соударяющихся частиц и характера процесса, происходящего при соударении.

Между двумя последовательными соударениями молекула движется прямолинейно и равномерно, проходя в среднем расстояние, называемое длиной свободного пробега $\left\langle \lambda \right\rangle $. Закон распределения свободных пробегов определяется вероятностью dw(x) того, что молекула пройдет без соударения путь x и совершит соударение на следующем бесконечно малом участке dx:

$n_0$ -- концентрация молекул газа.

Средняя длина свободного пробега может быть найдена по формуле:

\[\left\langle \lambda \right\rangle =\int\nolimits^{\infty }_0{xdw\left(x\right)=\int\nolimits^{\infty }_0{xe^{-n_0 \sigma x}n_0 \sigma dx=\frac{1}{n_0 \sigma }\left(5\right).}}\]

С учетом распределения соударяющихся молекул по относительным скоростям

\[\left\langle \lambda \right\rangle =\frac{1}{\sqrt{2}n_0 \sigma}\ \left(6\right),\]

где $\sigma$ считается не зависящей от относительно скорости.

Для двух состояний газа при постоянной температуре выполняется равенство:

Явления переноса

Если система находится в неравновесном состоянии, то предоставленная самой себе, она постепенно будет приходить к равновесному состоянию. Время релаксации -- это время, в течение которого система достигнет равновесного состояния. К явлениям переноса относят следующие явления:

  • теплопроводность. В состоянии равновесия температура T во всех точках системы одинакова. При отклонении температуры от равновесного значения в некоторой области в системе возникает движение теплоты в таких направлениях, чтобы сделать температуру всех частей системы одинаковой. Связанный с этим движением перенос тепла называют теплопроводностью;
  • диффузию. В состоянии равновесия плотность каждой компоненты во всех точках системы одинакова. При отклонении плотности от равновесного значения в некоторой области в системе возникает движение компонент вещества в таких направлениях, чтобы сделать плотность каждой компоненты постоянной по всему объёму. Связанный с этим движением перенос вещества называют диффузией.
  • вязкость. В равновесном состоянии разные части фазы покоятся друг относительно друга. При относительном движении фаз вещества друг относительно друга возникают силы трения или вязкость. Эти силы стремятся уменьшить скорость движения фаз.

Пусть G характеризует некоторое молекулярное свойство, отнесенное к одной молекуле. Это может быть энергия, импульс, концентрация и т.д. Если в равновесном состоянии G постоянно по объему, то при наличии градиента G имеется движение G в направлении его уменьшения. Пусть ось Ox направлена вдоль градиента G. Тогда полный поток $I_G$ в положительном направлении оси Ox в точке x имеет вид:

Уравнение (8) является основным уравнением процессов переноса количества G. Применение уравнения (8) рассмотрим в следующих главах, посвященных конкретным явлениям переноса.

Пример 1

Задание: При атмосферном давлении и температуре 273 К длина свободного пробега молекулы водорода равна 0,1 мк м. Оцените диаметр этой молекулы.

За основу возьмем формулу для средней длины свободного пробега молекулы:

\[\left\langle \lambda \right\rangle =\frac{1}{\sqrt{2}n_0 \sigma}=\frac{1}{\sqrt{2}n_0\pi d^2}\left(1.1\right).\]

Для нахождения диаметра молекулы в формуле (1.2) нам не хватает $n_0$ -- концентрации молекул. Используем уравнение состояния идеального газа, так как водород при атмосферном давлении можно считать идеальным газом:

Выразим диаметр из (1.1) и подставим вместо n (1.2), получим:

Проведем расчет:

Ответ: Диаметр молекулы водорода $\approx 2.3\cdot 10^{-10}м.$

Задание: Плотность газа увеличивают в 3 раза, а температуру уменьшают в 4 раза. Как изменилось число столкновений молекул в единицу времени?

Число столкновений определим как:

где $\left\langle S\right\rangle $- среднее перемещение молекулы, $\left\langle v\right\rangle $ -- средняя скорость молекулы.

\[\left\langle \lambda \right\rangle =\frac{1}{\sqrt{2}n_0 \pi d^2}\left(2.2\right).\]

\[\left\langle v\right\rangle =\sqrt{\frac{8\pi RT}{\mu }}\left(2.3\right).\] \

Необходимо еще определиться с $n_0$. Вспомним, что $n_0=\rho \frac{N_A}{\mu },$ $N_A$- число Авогадро, $\mu $- молярная масса вещества. Тогда:

\ \

тогда имеем:

\[\frac{z_2}{z_1}=\frac{{\rho }_2}{{\rho }_1}\sqrt{\frac{T_2}{T_1}}(2.4)\]

Подставим данные, получим:

\[\frac{z_2}{z_1}=3\cdot \frac{\sqrt{1}}{\sqrt{4}}=1,5\]

Ответ: Число столкновений увеличится в 1,5 раза.

Молекулярная физика и термодинамика

__________________________________________________________________________________________________________________

Лекция 16

Элементы физической кинетики

1. Понятие о физической кинетике

физической кинетикой.

Физическая кинетика использует представления об атомно-молеку-лярном строении веществ. Поэтому ей удается вычислить кинетические коэффициенты, диэлектрическую и магнитную проницаемости (восприимчивости) и ряд других характеристик сплошных сред.

Круг вопросов, изучаемых физической кинетикой, довольно широк и многообразен, например, кинетическая теория газов, неравновесные процессы в плазме, явления переноса в жидкостях и твердых телах, кинетика фазовых переходов и др.

В классическом случае, если известна функция распределения частиц системы по импульсам и координатам в зависимости от времени (в квантовом случае – статистический оператор), то можно найти все характеристики неравновесной физической системы.

Хотя вычисление полной функции распределения затруднено, для определения, например, импульса или потока энергии достаточно знать функцию распределения ограниченного числа частиц, а для газов малой плотности – одной частицы.

Физическая кинетика позволяет получать уравнения баланса средних плотностей вещества, импульса и энергии.

При этом используют существование различных промежутков времени релаксации для неравновесных процессов, например, в газах из частиц (квазичастиц) время свободного пробега много больше времени их контакта при столкновении, что позволяет перейти от полного описания неравновесных состояний функцией распределения к описанию состояния, используя функцию распределения одной частицы по ее импульсам и координатам.

Уравнением физической кинетики является кинетическое уравнение Больцмана, как основное уравнение микроскопической теории неравновесных процессов.

Оно учитывает только парные столкновения между молекулами и справедливо при условии, что длина свободного пробега молекул значительно больше их размеров (для упругих частиц газа). Поэтому оно применимо для не слишком плотных газов.

Для решения кинетического уравнения Больцмана используют кинетическую теорию газов, которая, в свою очередь, позволяет вычислить кинетические коэффициенты и получить макроскопическое уравнение для процессов переноса, например, диффузии, вязкости и теплопроводности.

2. Явления переноса.

Средняя длина свободного пробега молекул

Микроскопическую теорию процессов, происходящих в неравновесных системах, называют физической кинетикой.

Физическая кинетика использует методы классической или квантовой статистик.

Она изучает процессы переноса массы вещества, импульса, энергии, заряда и т. д. в различных физических системах (газах, жидкостях, твердых телах, плазме) и влияние на них внешних полей.

Молекулы реальных газов хотя и малы, имеют конечные размеры и, находясь в состоянии непрерывного хаотического теплового движения, неизбежно сталкиваются друг с другом и со стенками сосуда (рис. 1.).

От одного столкновения до другого молекулы движутся равномерно и прямолинейно.

Расстояние, на которое молекула переместится за время движения от одного столкновения до другого, называют длиной свободного пробега.

Для различных молекул эти расстояния неодинаковы. Поэтому в молекулярно-кинетической теории существует понятие о средней длине свободного пробега молекул
.

В общем случае размер молекул зависит от химической природы газа (азот, кислород, гелий и т. д.).

При движении за одну секунду молекула испытывает столкновения только с теми молекулами, которые попадают в некоторый объем, ограниченный цилиндром с площадью основания S = d 2 , где d 2 – эффективный диаметр (сечение) молекулы и образующей , если считать, что движется только одна молекула, а все остальные – неподвижны.

Среднее число столкновений молекулы в одну секунду

= d 2 n o , (1)

где n o =– концентрация молекул; N – число всех молекул в объеме V; – средняя арифметическая скорость молекулы.

Если учесть движение всех молекул, то вместо средней арифметической скорости можно использовать среднюю относительную скорость , т. е.

=
.

Следовательно,

=
d 2 n o . (2)

Так как за 1 с молекула пролетит расстояние , то средняя длина свободного пробега молекул

=
=
. (3)

При Т = const концентрация молекул газа пропорциональна давлению газа (n o  P), и средняя длина свободного пробега молекул обратно пропорциональна давлению,

 1/P.

Реальные молекулы не просто сталкиваются, как, например, бильярдные шарики, а взаимодействуют на расстоянии, зависящем в свою очередь, от сорта молекул, т. е. от эффективного сечения и других факторов, которые необходимо учитывать, например, при исследовании их взаимодействия с элементарными частицами.

Программа

Аттестационного собеседования для поступающих в магистратурупо профилю «Физика кинетических явлений»

1. Уравнения математической физики

Математические модели физических явлений, вывод основных уравнений мат. физики, начальные и граничные условия для них. Классификация линейных дифференциальных уравнений в частных производных второго порядка. Понятие о корректно поставленной задаче. Метод Фурье. Ортогональные системы функций. Ряды Фурье. Задача Штурма-Лиувилля. Метод Даламбера. Теория специальных функций: преобразования Лапласа, Фурье, Фурье-Бесселя. Решение некоторых задач математической физики методом интегральных преобразований. Прямые методы вариационного исчисления. Понятия об основных численных методах решения задач мат. физики: методы конечных разностей, методы конечных элементов, методы интегральных уравнений.

1. Смирнов высшей математики. Т.2;Т.3,ч.2;Т. Ч.-М:Наука,1981

2. ,Смирнов в частных производных математической физики,-М.: Высшая школа,1970

3. ,Самарский математической физики.-М:Наука,1977

4. ,Вариационное исчисление,-М.: Наука,1975

5. Краснов уравнения.-М.: Наука,1975

2. Теоретическая физика

2.1 Статистическая физика

Характерные особенности макроскопическихсистем. Основные понятия теории вероятностей: статистические ансамбли, основные соотношения между вероятностями. Статистическое описание систем, состоящих из частиц. Тепловое взаимодействие: распределение энергии между макроскопическими системами, температура, средняя энергия идеального газа, среднее давление идеального газа. Работа, внутренняя энергия и теплота, энтропия. Максвелловское распределение скоростей. Теорема о равномерном распределении. Удельная теплоемкость твердых тел. Основные положения статистической термодинамики. Элементарная кинетическая теория процессов переноса: вязкость и перенос импульса, теплопроводность и перенос энергии, самодиффузия и перенос молекул, электропроводность и перенос заряда. Кинетические явления в разреженном газе. Течение Кнудсена. Методы исследования течений разреженного газа.

1. , Лифшиц физика Т.5,Статистическая физика –М.:Наука,1964

2. Киттель Ч. Элементарная статистическая физика, М.:ИЛ,1960

3. Рейер Е. Берклеевский курс физики. Т.5. Статистическая физика М.:Наука,1972

4. Васильев в статистическую физику – М.: Высшая школа,1980

2.2 Квантовая механика

Квантовая система, ее состояние поля. Волны де Бройля. Волновое уравнение и принцип суперпозиции. Принцип неопределенности и теория измерений: принцип неопределенности Гейзенберга, измерения и статистические ансамбли. Нерелятивистское волновое уравнение Шредингера. Теория α-радиоктивности. Гармонический осциллятор матрицы в квантовой механике. Уравнение Паули. Теорема стационарных возмущений в дискретном спектре. Фазовая теория рассеяния в центрально-симметричном поле. Квантование свободного электромагнитного поля.

1. , Лифшиц Е. Теоретическая физика. Квантовая механика. М.: Наука,1974

2. Фейнман Р.,Лейтон Р.,Сэндс Н. Фейнмановские лекции по физике, вып. 8 и 9 «Квантовая механика» - М.: мир,1966,1967

3. Киттель Ч. Введение в физику твердого тела. М.:Физматгид,1962

4. Гидрогазодинамика

Идеальная жидкость. Термодинамика идеальной жидкости. Уравнения Эйлера. Гидростатика. Уравнение Бернулли. Потоки энергии и импульса в идеальной жидкости. Потенциальное течение идеальной жидкости. Несжимаемая жидкость. Вязкая жидкость. Тензор вязких напряжений. Уравнения Навье-Стокса. Несжимаемая вязкая жидкость Диссипация энергии в вязкой несжимаемой жидкости. Течение по трубе вязкой несжимаемой жидкости. Течение вязкой несжимаемой жидкости при малых числах Рейнольдса. Формула Стокса. Ламинарный пограничный слой.

Течения вязкой несжимаемой жидкости при больших числах Рейнольдса Турбулентность течения. Уравнение Прандтля. Турбулентный пограничный слой. Механика сжимаемой жидкости. Распространение конечных возмущений в идеальной сжимаемой жидкости. Стационарные адиабатические течения. Параметры торможения. Критические параметры.

Движение с ударными волнами. Ударные волны в совершенном газе. Ударная адиабата. Методы подобия и размерностей в гидрогазодинамике. Числа Рейнольдса, Маха, Прандтля, Пекле, Нуссельта и их физический смысл.

53/Л22 , Лифшиц физика. Т. 6. Гидродинамика, М., “Наука”, 1988

*532/Л72 , Механика жидкости и газа, М. Наука, 1987, 1973, 1

5 Методы и средства изучения кинетических явлений

Методы и исследования явлений переноса. Методы получения сверхнизких и сверхвысоких давлений. Применение масс-спектрометрии при исследовании кинетических процессов. Физические принципы атомной, молекулярной, абсорбционной , оптико-акустической и люминесцентной спектроскопии.

Оптические методы измерения скорости и температуры. Методы измерения давления и температуры.

Методы газового анализа. Методы измерения примесей в воде. Основное уравнение вакуумной техники. Понятие эффективной скорости откачки. Масс-спектрометрические измерители парциальных давлений. Фотоприемники. Основные принципы работы и применение.107. Хроматографический метод анализа. Сущность и применение.

Рекомндуемая литература

Сысоев и техника масс-спектрометрических приборов и электромагнитных установок. М.: Энергоатомиздат, 1983.

Чупахин в масс-спектрометрию. М.: Атомиздат, 1977

Д. Вудраф, Т. Делчар. Современные методы исследования поверхности. М.: Мир, 1989

Розанов техника. М.: Высшая школа,

Новицкий измерения физических величин. - Л.: Энергоатомиздат, 1983.

Кинетика физическая

теория неравновесных макроскопических процессов, то есть процессов, возникающих в системах, выведенных из состояния теплового (термодинамического) равновесия. К К. ф. можно отнести термодинамику неравновесных процессов (См. Термодинамика неравновесных процессов), кинетическую теорию газов (См. Кинетическая теория газов) (в том числе плазмы), теорию процессов переноса в твёрдых телах, а также общую статистическую теорию неравновесных процессов, которая начала развиваться лишь в 50-е гг.

Все неравновесные процессы в адиабатически изолированных системах (системах, не обменивающихся теплом с окружающими телами) являются необратимыми процессами (См. Необратимые процессы) - происходят с увеличением энтропии (См. Энтропия); в равновесном состоянии энтропия достигает максимума.

Как и в случае равновесных состояний, в К. ф. возможны два способа описания систем: феноменологический, или термодинамический (термодинамика неравновесных процессов), и статистический.

Термодинамический метод описания неравновесных процессов

При термодинамическом описании неравновесных процессов рассматривается изменение в пространстве и времени таких макроскопических параметров состояния системы, как плотность массы i -го компонента ρ i (r, t ), плотность импульса ρu (r, t ), локальная температура T (r , t ), поток массы i-го компонента j i (r, t ), плотность потока внутренней энергии q (r, t ) [здесь r - координата, t - время, u - средняя массовая скорость, ρ - плотность массы]. В равновесном состоянии системы ρ , ρ i , Т постоянны, а потоки равны нулю.

Термодинамическое описание неравновесных возможно лишь при достаточно медленном параметров состояния в пространстве и во времени для состояний, близких к равновесным. Для газов это означает, что все термодинамические параметры, характеризующие состояние системы, мало меняются на длине свободного пробега и за время, равное среднему времени свободного пробега молекул (среднему времени между двумя последовательными столкновениями молекул). Медленные процессы встречаются практически очень часто, так как установление равновесия происходит только после очень большого числа столкновений; к ним относятся: Диффузия , Теплопроводность , Электропроводность и т.д. Отклонения от состояния термодинамического равновесия характеризуются Градиент ами температуры, концентрации (ρ i /ρ ) и массовой скорости (так называемыми термодинамическими силами), а потоки энергии, массы i -го компонента и импульса связаны с термодинамическими силами линейными соотношениями. Коэффициенты в этих соотношениях называются кинетическими коэффициентами.

Рассмотрим в качестве примера диффузию в бинарной смеси, то есть процесс выравнивания концентрации компонентов в результате хаотического теплового движения молекул. Феноменологическое уравнение, описывающее процесс диффузии, получают с помощью закона сохранения вещества и того опытного факта, что поток вещества одного из компонентов вследствие диффузии прямо пропорционален градиенту его концентрации (с обратным знаком). Коэффициент пропорциональности называется коэффициентом диффузии. Согласно уравнению диффузии, скорость изменения концентрации вещества со временем прямо пропорциональна дивергенции (См. Дивергенция) градиента концентрации с коэффициентом пропорциональности, равным коэффициенту диффузии.

Решение уравнения диффузии позволяет определить время, в течение которого произойдёт выравнивание концентрации молекул в системе (например, в сосуде с газом) за счёт диффузии (время релаксации). Время релаксации τ р имеет порядок: τ р Кинетика физическая L 2 /D, где L - линейные размеры сосуда, a D - коэффициент диффузии. Это время тем больше, чем больше размеры сосуда и чем меньше коэффициент диффузии. Коэффициент диффузии пропорционален длине свободного пробега молекул λ и их средней тепловой скорости ν. Поэтому время релаксации оказывается пропорциональным: τ р Кинетика физическая L 2 / λν = (L/λ ) 2 λ/ν, где λ/ν = τ - среднее время свободного пробега. Очевидно, что τ р >> τ при L >> λ . Таким образом, условие L >> λ (размеры системы велики по сравнению с длиной свободного пробега молекул) является необходимым для того, чтобы процесс установления равновесного состояния можно было считать медленным. Аналогичным образом устанавливаются уравнения, описывающие теплопроводность, внутреннее трение, электропроводность и т.д. Коэффициент диффузии, теплопроводности и вязкости, а также удельная электропроводность в феноменологической теории должны быть определены экспериментально.

Перечисленные процессы называются прямыми. Этим подчёркивается, что, например, при диффузии градиент концентрации данного вещества вызывает поток этого же вещества; градиент температуры вызывает поток внутренней энергии, которая при постоянной концентрации молекул меняется только с температурой; электрический ток вызывается градиентом потенциала и т.д. Кроме прямых процессов, существуют ещё так называемые перекрёстные процессы. Примером перекрёстного процесса может служить Термодиффузия - перенос вещества не вследствие градиента концентрации (это была бы обычная диффузия), а вследствие градиента температуры. Термодиффузия создаёт градиент концентрации, что приводит к появлению обычной диффузии. Если разность температур в системе поддерживается постоянной, то устанавливается стационарное состояние, при котором потоки вещества, вызванные градиентами температуры и концентрации, взаимно уравновешиваются. В смеси газов при этом концентрация молекул в местах повышенной температуры оказывается большей для молекул меньшей массы (данное явление используется для разделения изотопов (См. Изотопы)).

Градиент концентрации в свою очередь создаёт поток внутренней энергии. В этом состоит процесс диффузионной теплопроводности. При наличии в теле заряженных частиц градиент температуры создаёт упорядоченное перемещение этих частиц - электрический ток, называемый термоэлектрическим (см. Термоэлектрические явления).

В К. ф. важное значение имеет принцип симметрии кинетических коэффициентов, установленный Л. Онсагер ом. В равновесном состоянии термодинамические параметры a i (давление, температура и т.д.), характеризующие состояние макроскопической системы, постоянны во времени: da i /dt = 0. Важнейшая функция состояния системы - энтропия S , зависящая от a i , в состоянии равновесия имеет максимум и, следовательно, её частные производные ∂S/∂ aj = 0. При малом отклонении системы от равновесия производные ∂S/∂ aj и ∂a/∂t малы, но отличны от нуля, и между ними существуют приближённые линейные соотношения. Коэффициенты пропорциональности в этих соотношениях и есть кинетические коэффициенты. Если через γ ik обозначить коэффициент, определяющий скорость изменения параметра системы a i зависимости от = γ ki . Принцип Онсагера вытекает из свойства микроскопической обратимости, которая выражается в инвариантности уравнений движения частиц системы относительно замены знака времени: t → -t (см. Онсагера теорема). Из этого принципа, в частности, следует существование связи между коэффициентами, определяющим выделение током тепла из-за неравномерного нагрева проводника (Томсона эффект), и коэффициентами, определяющим выделение током тепла в спаях разнородных проводников или полупроводников (Пельтье эффект).

Статистический метод описания неравновесных процессов.

Статистическая теория неравновесных процессов является более детальной и глубокой, чем термодинамическая. В отличие от термодинамического метода, статистическая теория на основе определенных представлений о строении вещества и действующих между молекулами силах позволяет вычислить кинетические коэффициенты, определяющие интенсивность процессов диффузии, внутреннего трения (вязкости (См. Вязкость)), электропроводности и т.д. Однако эта теория весьма сложна.

Статистический метод описания систем как в равновесном, так и неравновесном состоянии основан на вычислении функции распределения. Для равновесных состояний имеются универсальные функции распределения координат и импульсов (или скоростей) всех частиц, определяющие вероятность того, что эти величины принимают фиксированные значения. Для систем, находящихся в тепловом контакте с окружающей средой, температура которой постоянна, это - каноническое Гиббса распределение , а для изолированных систем - микроканоническое Гиббса распределение; оба распределения полностью определяются энергией системы.

Неравновесные состояния в гораздо большей степени (чем равновесные) зависят от микроскопических свойств систем: свойств атомов и молекул и сил взаимодействия между ними. Лишь в 50-60-е гг. были разработаны общие методы построения функций распределения (по координатам и импульсам всех частиц системы), аналогичных каноническому распределению Гиббса, но описывающих неравновесные процессы.

С помощью функций распределения можно определить любые макроскопические величины, характеризующие состояние системы, и проследить за их изменением в пространстве с течением времени. Это достигается вычислением статистических средних (см. Статистическая физика). Нахождение функции распределения, зависящей от координат и импульсов всех частиц, является в общем случае неразрешимой задачей, т.к. оно эквивалентно решению уравнений движения для всех частиц системы. Однако для практических целей нет необходимости в знании точного вида этой функции распределения: она содержит слишком подробную информацию о движении отдельных частиц, которая не существенна для определения поведения системы в целом. В связи с этим используется приближенное статистическое описание с помощью более простых функций распределения. Для описания состояния газов средней плотности достаточно знания так называемой одночастичной функции распределения f (p, r, t ), дающей среднее число частиц с определёнными значениями импульсов р (или скоростей ν ) и координат r. Для газов более высокой плотности необходимо знание двухчастичных (парных) функций распределения. Общий метод получения уравнений для одночастичных и более сложных функций (зависящих от координат и импульсов двух и более частиц) был разработан Н. Н. Боголюбов ым, М. Борн ом, М. Грином и др. Эти уравнения называются кинетическими. К их числу относится Кинетическое уравнение Больцмана для разреженных газов, полученное Л. Больцман ом из соображений, основанных на балансе частиц со скоростями в интервалах Δν x , Δν y , Δν z внутри объёма Δх Δy Δz (ν x , ν y , ν z - проекции скорости ν на координатные оси х, у, z ). Разновидностями уравнения Больцмана для ионизированного газа (плазмы) являются кинетические уравнения Л. Д. Ландау и А. А. Власов а (см. Плазма).

Кинетические уравнения могут быть построены не только для газов, но и для малых возбуждений в конденсированных системах. Тепловое движение системы характеризуется различного рода возбуждениями. В газе это - поступательное движение составляющих его частиц и внутренние возбуждения атомов и молекул. В общем случае тепловое движение характеризуется возбуждениями более сложной природы. Так, в кристаллических телах тепловое возбуждение можно представить в виде упругих волн, распространяющихся вдоль кристалла, точнее - волн, соответствующих нормальным колебаниям кристаллической решётки (См. Колебания кристаллической решётки). В плазме коллективными возбуждениями являются колебания плотности электрического заряда, вызванные дальнодействующими кулоновскими силами. В металлах возможны электронные возбуждения (переходы электронов из состояний внутри Ферми поверхности (См. Ферми поверхность) в состояния вне её), а в полупроводниках - ещё и дырочные возбуждения (появление свободных от электронов состояний в валентной зоне при переходе электронов в зону проводимости; см. Полупроводники). При низких температурах, в слабовозбуждённом состоянии, энергию возбуждения всегда можно представить в виде суммы некоторых элементарных возбуждений, или, на квантовом языке, квазичастиц (См. Квазичастицы). Понятие о квазичастицах применимо не только для кристаллических тел, но и для жидких, газообразных и аморфных, если температура не слишком велика. Функции распределения для квазичастиц системы, находящейся в неравновесном состоянии, удовлетворяют кинетическому уравнению.

В случае квантовых систем функция распределения зависит от Спин а частиц (или квазичастиц). В частности, для частиц с полуцелым спином равновесной функцией распределения служит распределение Ферми - Дирака, а для частиц (квазичастиц) с целым или нулевым спином - распределение Бозе - Эйнштейна (см. Статистическая физика).

В кинетических уравнениях наряду с внешними воздействиями учитываются взаимодействия между частицами или квазичастицами, причем эти взаимодействия рассматриваются как парные столкновения. Именно эти взаимодействия приводят к установлению равновесных состояний. Во многих случаях функция распределения не зависит явно от времени. Такая функция называется стационарной, она описывает процессы, течение которых не претерпевает изменений со временем. При стационарных процессах изменение функции распределения вследствие внешних воздействий компенсируется её изменением в результате столкновений.

В простых случаях можно грубо оценить изменение функции распределения f системы в результате столкновений, считая, что оно пропорционально величине отклонения от равновесной функции (так как только при отклонении от состояния равновесия столкновения меняют функцию распределения). Величина, обратная коэффициенту пропорциональности в этом соотношении, называется временем релаксации. В общем случае учесть взаимодействие таким простым способом невозможно, и в кинетическое уравнение входит так называемый интеграл столкновений, который более точно учитывает результат изменения функции распределения вследствие взаимодействия частиц (квазичастиц).

Решая кинетическое уравнение, находят неравновесную функцию распределения и вычисляют потоки энергии, массы и импульса, что позволяет получить уравнения теплопроводности, диффузии и переноса импульса (уравнение Навье - Стокса) с кинетическими коэффициентами, выраженными через молекулярные постоянные. [Однако кинетическое уравнение можно построить лишь для газов (из частиц или квазичастиц)].

Основные принципы теории неравновесных процессов надёжно установлены. Разработаны методы построения уравнений переноса энергии, массы и импульса в различных системах, не только в газах, а, например, и в жидкостях. При этом получают выражения для кинетических коэффициентов, входящих в эти уравнения, через корреляционные функции (функции, описывающие корреляцию в пространстве и во времени) потоков этих физических величин, то есть в конечном счете, через молекулярные постоянные. Эти выражения очень сложны и могут быть вычислены лишь средствами современной вычислительной математики.

Лит.: Гуревич Л. Э., Основы физической кинетики, М.- Л., 1940; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М.-Л., 1946; Гуров К. П, Основания кинетической теории. Метод Н. Н. Боголюбова, М., 1966; Ландау Л. Д., Лифшиц Е. М., Статистическая физика, М., 1964 (Теоретическая физика, т. 5): Климонтович Ю. Л., Статистическая теория неравновесных процессов в плазме, М., 1964; Пригожин И. Р., Неравновесная статистическая механика, пер. с англ., М., 1964; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; Гроот С., Мазур П., Неравновесная термодинамика, пер. с англ., М., 1964; Честер Дж., Теория необратимых процессов, пер. с англ., М., 1966; Хаазе Р., Термодинамика необратимых процессов, пер. с нем., М., 1967.

Г. Я. Мякишев.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама