THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Cтраница 3


Из сказанного ясно, что физическое и математическое моделирование (или, что то же самое, физическое и математическое исследование) физико-химических процессов нельзя осуществить независимо друг от друга. Математическое описание и математическая модель появляются в результате физического исследования (моделирования) процессов. Поскольку математическое моделирование не является самоцелью, а служит средством для оптимального осуществления процесса, то результаты его используются для создания оптимального физического объекта. Исследования на этом объекте (новое физическое моделирование) позволяют проверить результаты математического моделирования и улучшить математическую модель для решения новых задач.  

В книге рассмотрено применение методов физического и математического моделирования для решения ряда технических проблем, возникающих в инженерной практике при разработке, масштабировании и управлении химическими процессами нефтепереработки.  

Относительная роль и взаимосвязь методов физического и математического моделирования при исследованиях - в определенной мере вопрос конъюнктурный, зависящий от уровня развития вычислительной техники, прикладной математики и техники экспериментальных исследований. Еще сравнительно недавно (до появления и внедрения в практику ЭВМ) физическое моделирование было основным методом перехода от пробирки к заводу.  

Следует остановиться и на трудностях физического и математического моделирования колонных аппаратов, так как в данном елучае имеется двухфазная система с тяжеломоделируемыми и рассчитываемыми моментами межфазных переходов. Струйное впрыскивание и барботаж газа создают сложную гидродинамическую картину в колонных аппаратах. Даже самая упрощенная (квазигомогенная) модель колонных аппаратов приводит к нелинейным системам уравнений в частных производных, анализ которых в настоящее время даже с использованием средств электронно-вычислительной техники представляет определенные трудности.  

Приводится краткий обнор работ по физическому и математическому моделированию процессов филътрагдаи в газовых и газо-конденсатках месторождению. Определяются основные направления предстоящих исследований по каждому из видев моделирования.  

Из существующих методов наиболее широко применяется физическое и математическое моделирование. Это деление является условным, так как оба метода моделируют физические величины посредством самих физических величин. Различие заключается в том, что в первом случае моделирование осуществляется с помощью физических величин той же природы, во втором - физический процесс одной природы заменяется физическим процессом другой природы, но так, что оба физические явления подчиняются одинаковым законам. Они признаются аналогичными и математически описываются уравнениями одинаковой структуры. Так, электрическая система с индуктивностью, емкостью и сопротивлением может быть математической моделью колеблющегося на пружине груза. Здесь зарядка конденсатора, а затем его разрядка вследствие замыкания через сопротивление и емкость аналогичны отклонению груза от положения равновесия и последующего затухающего колебания.  

В современной экспериментальной практике широко применяют физическое и математическое моделирование, которое незаменимо в тех случаях, когда нельзя определить параметры машин расчетными методами, а построение их опытных образцов для экспериментального исследования требует больших материальных затрат и времени.  

При проектировании разработки газоконденсатных месторождений проводят комплексное физическое и математическое моделирование процесса дифференциальной конденсации пластовых смесей. В результате этих исследований получают величину давления начала конденсации, прогнозные данные о динамике выпадения и последующего испарения жидкой фазы при уменьшении давления, составе и свойствах добываемой смеси, коэффициентах конденсато - и компонентоотдачи.  

Во многих случаях целесообразно комбинировать установки физического и математического моделирования в единую систему, позволяющую совместить преимущества обоих методов.  

Эта теория, основанная на сочетании физического и математического моделирования, исходит из того, что указанный выше масштабный эффект обусловлен преимущественно ухудшением структуры потоков с увеличением размеров аппарата, и прежде всего - возрастанием неравномерности распределения скоростей по поперечному сечению аппарата.  

Формирование физико-геологической модели базируется на результатах физического и математического моделирования. Так, при физическом моделировании создаются искусственные модели с близкими к горным породам физическими свойствами и с соблюдением условий подобия, при математическом моделировании рассчитываются физические поля для заданных физических свойств с использованием соответствующих уравнений теории потенциальных полей или дифференциальных волновых уравнений.  

В чем состоит принципиальное различие между физическим и математическим моделированием.  

Этот вывод подтверждается многочисленными опытами, физическим и математическим моделированием контура.  

При разработке новых процессов и аппаратов применяют физическое и математическое моделирование.  

Необходимо иметь в виду, что нельзя противопоставлять физическое и математическое моделирование.  

Моделирование

Моделирование и его виды

Моделирование является одним из основных методов современных научных исследований.

Моделирование – это исследование объектов познания на их моделях, построение и изучение моделей реально существующих предметов, явлений и конструируемых объектов. Это воспроизведение изучаемых свойств объекта или явления с помощью модели при ее функционировании в определенных условиях. Модель – это образ, структура или материальное тело, которые воспроизводят с той или иной мерой сходства явление или объект. Модель изоморфна (сходственна, аналогична) с натурой (оригиналом), обобщением которой она является. Она воспроизводит наиболее характерные признаки изучаемого объекта, выбор которых определяется целью исследования. Модель всегда приближенно отображает объект или явление. В противном случае модель превращается в объект и теряет свое самостоятельное значение.

Для получения решения модель должна быть достаточно простой и в то же время она должна отражать существо задачи, чтобы найденные с ее помощью результаты имели смысл.

В процессе познания человек всегда, более или менее явно и сознательно, строит модели ситуаций окружающего мира и управляет своим поведением в соответствии с выводами, полученными им при изучении модели. Модель всегда отвечает конкретной цели и ограничена рамками поставленной задачи. Модель системы управления для специалиста по автоматике коренным образом отличается от модели этой же системы для специалиста по надежности. Моделирование в конкретных науках связывают с выяснением (или воспроизведением) свойств какого-либо объекта, процесса или явления с помощью другого объекта, процесса или явления, причем обычно предполагается соблюдение определенных количественных соотношений между моделью и оригиналом. Различают три вида моделирования.

1. Математическое (абстрактное) моделирование основывается на возможности описания изучаемого процесса или явления на языке некоторой научной теории (чаще всего на математическом).

2. Аналоговое моделирование основывается на изоморфизме (сходственности) явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими уравнениями. Примером может служить изучение гидродинамического процесса с помощью исследования электрического поля. Оба эти явления описываются дифференциальным уравнением Лапласа в частных производных, решение которого обычными методами возможно только для частных случаев. В то же время экспериментальные исследования электрического поля намного проще соответствующих исследований в гидродинамике.

3. Физическое моделирование состоит в замене изучения некоторого объекта или явления экспериментальным исследованием его модели, имеющей ту же физическую природу. В науке любой эксперимент, проводимый в целях выявления тех или иных закономерностей изучаемого явления или для проверки правильности и границ применимости теоретических результатов, фактически представляет собой моделирование, так как объект исследования – конкретная модель (образец), обладающая определенными физическими свойствами. В технике физическое моделирование используют тогда, когда трудно провести натурный эксперимент. В основу физического моделирования положены теории подобия и анализ размерностей. Необходимым условием реализации этого вида моделирования является геометрическое подобие (подобие формы) и физическое подобие модели и оригинала: в сходственные моменты времени и в сходственных точках пространства значения переменных величин, характеризующих явления, для оригинала должны быть пропорциональны тем же значениям для модели. Это позволяет производить соответствующий пересчет полученных данных.

Математическое моделирование и вычислительный эксперимент.

В настоящее время наибольшее распространение получили математические модели, реализуемые на ЭВМ. При построении данных моделей можно выделить следующие этапы:

1. Создание или выбор модели, соответствующей поставленной задаче.

2. Создание условий функционирования модели.

3. Эксперимент на модели.

4. Обработка результатов.

Рассмотрим более подробно перечисленные выше этапы.

На математическое описание исследуемого объекта (процесса) на первом этапе накладывается ряд требований: разрешимость используемых уравнений, соответствие математического описания изучаемому процессу с допустимой точностью, адекватность принятых допущений, практическая целесообразность использования модели. Степень удовлетворения этих требований определяет характер математического описания и является наиболее сложной и трудоемкой частью при создании модели.

Рис. 2.1. Схема процесса построения математической модели

Реальные физические явления, как правило, очень сложны, и их никогда нельзя проанализировать точно и в полном объеме. Построение модели всегда связано с компромиссом, т.е. с принятием допущений при которых справедливы уравнения модели (рис. 2.1). Таким образом, чтобы с помощью модели можно было получить имеющие смысл результаты, она должна быть достаточно детальной. В то же время она должна быть достаточно простой, чтобы можно было получить решение при ограничениях налагаемых на результат такими факторами как сроки, быстродействие ЭВМ, квалификация исполнителей и т. д.

Математическая модель, отвечающая требованиям первого этапа моделирования, обязательно содержит в себе систему уравнений основного определяющего процесса или процессов. Только такая модель пригодна для моделирования. Это свойство лежит в основе отличия моделирования от расчета и определяет возможность использования модели для моделирования. Расчет, как правило, базируется на основе зависимостей, полученных ранее, при исследованиях процесса, и поэтому отображает определенные свойства объекта (процесса). Следовательно, методику расчета можно назвать моделью. Но функционирование такой модели воспроизводит не изучаемый процесс, а изученный. Очевидно, понятия моделирования и расчета четко не разграничиваются, потому что и при математическом моделировании на ЭВМ алгоритм модели сводится к расчету. Но в этом случае расчет носит вспомогательный характер, так как результаты расчета позволяют получить изменение количественных характеристик модели. Самостоятельного значения, какое имеет моделирование, в данном случае расчет иметь не может.

Рассмотрим второй этап моделирования. Модель в ходе эксперимента так же как и объект, функционирует в определенных условиях, которые задаются программой эксперимента. Условия моделирования не входят в понятие модели, поэтому с одной и той же моделью можно проводить различные эксперименты при задании различных условий моделирования. Математическому описанию условий функционирования модели, несмотря на кажущуюся однозначность толкования, необходимо уделять серьезное внимание. При описании математической модели некоторые несущественные процессы следует заменять экспериментальными данными и зависимостями или трактовать их упрощенно. Если эти данные не будут полностью соответствовать предполагаемым условиям функционирования модели, то результаты моделирования могут быть неверными.

После получения математического описания модели и условий функционирования составляют алгоритмы расчетов, блок-схемы программ для ЭВМ, а затем и программы.

В процессе отладки программ их составные части и отдельные программы в целом подвергаются всесторонней проверке для выявления ошибки или недостаточности математического описания. Проверку производят путем сопоставления полученных данных с известными фактическими данными. Окончательной проверкой является контрольный эксперимент, который осуществляют при одинаковых условиях с проведенным ранее экспериментом непосредственно на объекте. Совпадение с достаточной точностью результатов эксперимента на модели и эксперимента на объекте служит подтверждением соответствия модели и объекта (адекватности модели реальному объекту) и достоверности результатов последующих исследований.

Отлаженная и отвечающая принятым положениям программа моделирования на ЭВМ имеет все необходимые элементы для проведения самостоятельного эксперимента на модели (третий этап), который называют также вычислительным экспериментом .

Четвертый этап математического моделирования – обработка результатов принципиально не отличается от обработки результатов обычного эксперимента.

Более подробно рассмотрим широко распространенное в настоящее время понятие вычислительного эксперимента. Вычислительным экспериментом называется методология и технология исследований, основанные на применении прикладной математики и ЭВМ как технической базы при использовании математических моделей. В таблице приведена сравнительная характеристика натурного и вычислительного экспериментов. (Натурный эксперимент поводится в естественных условиях и на реальных объектах).

Сравнительная характеристика натурного и вычислительного экспериментов

Таблица 2.1

Натурный эксперимент Вычислительный эксперимент
Основные этапы 1. Анализ и выбор схемы эксперимента, уточнение элементов установки, ее конструкции. 1. На основе анализа объекта (процесса) выбирается или создается математическая модель.
2. Разработка конструкторской документации, изготовление экспериментальной установки и ее отладка. 2. Для выбранной математической модели составляется алгоритм расчета, создается программа для машинного счета.
3. Пробный замер параметров на установке в соответствии с программой эксперимента. 3. Пробный машинный счет в соответствии с программой вычислительного эксперимента.
4. Детальный анализ результатов эксперимента, уточнение конструкции установки, ее доводка, оценка степени достоверности и точности проведенных измерений. 4. Детальный анализ результатов расчетов для уточнения и корректировки алгоритма и программ счета, доводка программы.
5. Проведение чистовых экспериментов в соответствии с программой. 5. Окончательный машинный счет в соответствии с программой.
6. Обработка и анализ экспериментальных данных. 6. Анализ результатов машинного счета.
Преимущества Как правило, более достоверные данные об изучаемом объекте (процессе) Широкие возможности, большая информативность и доступность. Позволяет получить значения всех интересующих параметров. Возможность качественно и количественно проследить функционирование объекта (эволюцию процессов). Сравнительная простота уточнения и расширения математической модели.

На основе математического моделирования и методов вычислительной математики создались теория и практика вычислительного эксперимента. Рассмотрим подробнее этапы технологического цикла вычислительного эксперимента.

1. Для исследуемого объекта строится модель, формулируются допущения и условия применимости модели, границы, в которых будут справедливы полученные результаты; модель записывается в математических терминах, как правило, в виде дифференциальных или интегродифференциальных уравнений; создание математической модели проводится специалистами, хорошо знающими данную область естествознания или техники, а также математиками, представляющими себе возможности решения математической задачи.

2. Разрабатывается метод расчета сформулированной математической задачи. Эта задача представляется в виде совокупности алгебраических формул, по которым должны вестись вычисления и условия, показывающие
последовательность применения этих формул; набор этих формул н условий носит название вычислительного алгоритма. Вычислительный эксперимент имеет многовариантный характер, так как решения поставленных задач часто зависят от многочисленных входных параметров. Тем не менее каждый конкретный расчет в вычислительном эксперименте проводится при фиксированных значениях всех параметров. Между тем в результате такого эксперимента часто ставится задача определения оптимального набора параметров. Поэтому при создании оптимальной установки приходится проводить большое число расчетов однотипных вариантов задачи, отличающихся значением некоторых параметров. При организации вычислительного эксперимента обычно используются эффективные численные методы.

3. Разрабатываются алгоритм и программа решения задачи на ЭВМ. Программирование решений определяется теперь не только искусством и опытом исполнителя, а перерастает в самостоятельную науку со своими принципиальными подходами.

4. Проведение расчетов на ЭВМ. Результат получается в виде некоторой цифровой информации, которую далее необходимо будет расшифровать. Точность информации определяется при вычислительном эксперименте достоверностью модели, положенной в основу эксперимента, правильностью алгоритмов и программ (проводятся предварительные «тестовые» испытания).

5. Обработка результатов расчетов, их анализ и выводы. На этом этапе могут возникнуть необходимость уточнения математической модели (усложнения или, наоборот, упрощения), предложения по созданию упрощенных инженерных способов решения и формул, дающих возможности получить необходимую информацию более простым способом.

Возможности вычислительного эксперимента шире, чем эксперимента с физической моделью, так как получаемая информация более подробная. Математическая модель может быть сравнительно просто уточнена или расширена. Для этого достаточно изменить описание некоторых ее элементов. Кроме того, несложно выполнить математическое моделирование при различных условиях моделирования, что позволяет получить оптимальное сочетание конструкционных параметров, показателей работы объекта (характеристик процесса). Для оптимизации указанных параметров целесообразно использовать методику планирования эксперимента, подразумевая под последним вычислительный эксперимент.

Вычислительный эксперимент приобретает исключительное значение в тех случаях, когда натурные эксперименты и построение физической модели оказываются невозможными. Особенно ярко можно проиллюстрировать значение вычислительного эксперимента при исследовании масштабов современного воздействия человека на природу. То, что принято называть климатом – устойчивое среднее распределение температуры, осадков, облачности и т. д., – представляет собой результат сложного взаимодействия грандиозных физических процессов, протекающих в атмосфере, на поверхности земли и в океане. Характер и интенсивность этих процессов в настоящее время изменяются значительно быстрее, чем в сравнительно, близком геологическом прошлом в связи с воздействием загрязнения воздуха индустриальными выбросами углекислого газа, пыли н т. д. Климатическую систему можно исследовать, строя соответствующую математическую модель, которая должна описывать эволюцию климатической системы, учитывающей взаимодействующие между собой атмосферы океана и суши. Масштабы климатической системы настолько грандиозны, что эксперимент даже в одном каком-то регионе чрезвычайно дорог, не говоря уже о том, что вывести такую систему из равновесия было бы опасно. Таким образом, глобальный климатический эксперимент возможен, но не натурный, а вычислительный, проводящий исследования не реальной климатической системы, а ее математической модели.

В науке и технике известно немало областей, в которых вычислительный эксперимент оказывается единственно возможным при исследовании сложных систем.


Похожая информация.


Научной базой применения концептуальных, конструкторских, технологических и материаловедческих решений для всех этапов создания машин и конструкций должны стать принципы и методы физического и математического моделирования.

Физическое и математическое моделирование в машиностроении базируется на общих подходах, развиваемых на основе фундаментальных наук, прежде всего математики, физики, химии и др. Математическое моделирование и вычислительный эксперимент становятся новым методом анализа сложных машин, рабочих процессов и системы машина - человек - среда. Физическое и математическое моделирование проводится в несколько стадий.

Начинается моделирование с постановки и уточнения задачи, рассмотрения физических аспектов, определения степени влияния на моделируемые процессы различных факторов в программируемых условиях функционирования моделируемых систем или процесса. На этой основе строится физическая модель. Затем на ее базе строится математическая модель, включающая в себя математическое описание моделируемого процесса или механической системы в соответствии с закономерностями кинематики и динамики, поведения материалов под действием нагрузок и температур и т. д. Модель исследуется по таким направлениям, как соответствие поставленной задаче, существование решения и т. п.

На следующей стадии выбирается вычислительный алгоритм решения задачи моделирования. Современные численные методы позволяют снять ограничения на степень сложности математических моделей.

Далее осуществляется программирование вычислительного алгоритма для ЭВМ . При этом создаются проблемно-ориентированные пакеты прикладных программ, позволяющие на их основе создавать сложные программы для комплексного описания процессов, машин и систем машин.
На следующей стадии выполняются расчеты на ЭВМ по разработанным программам. Существенное значение при этом имеет рациональное представление конечных результатов. Завершающая стадия предусматривает анализ полученных результатов, сопоставление их с данными физических экспериментов на натурных образцах изделий. В случае необходимости ставится задача уточнения выбранной математической модели с последующим повторением указанных выше стадий.

После завершения работ по физическому и математическому моделированию формируются общее заключение и выводы по конструкторским, технологическим и эксплуатационным мероприятиям, связанным с созданием новых материалов и технологий, обеспечением условий надежной и безопасной работы машин, удовлетворением требований эргономики и экологии. Создание новых машин и конструкций с повышенным уровнем рабочих параметров, экологических и эргономических требований представляет собой сложную комплексную проблему, эффективное решение которой базируется на физическом и математическом моделировании. Общая схема использования моделирования на различных этапах создания машин представлена на картинке ниже.

Разработка эскизного проекта предусматривает построение физических моделей на основании опыта создания прототипов. Математические модели включают новые знания об анализе и синтезе структурных и кинематических схем, о динамических характеристиках взаимодействия между основными элементами с учетом рабочих сред и процессов. На этом же этапе формируются и решаются в общем виде вопросы экологии и эргономики.

При разработке технического проекта должен осуществляться переход к физическим моделям основных узлов, испытываемым в лабораторных условиях. К математическому обеспечению технического проекта относятся системы автоматизированного проектирования.
Создание принципиально новых машин (машин будущего) требует совершенствования методов математического моделирования и построения новых моделей. Это в значительной мере относится к уникальным объектам новой техники (атомная и термоядерная энергетика, ракетная, авиационная и криогенная техника) , а также к новым технологическим, транспортным аппаратам и устройствам (лазерные и импульсные технологические установки, системы на магнитной подвеске, глубоководные аппараты, адиабатные двигатели внутреннего сгорания и др.) . При этом для реализации задач математического моделирования необходимы сверхмощные ЭВМ и дорогостоящие программы.
На этапе рабочего проектирования физическое моделирование предполагает создание макетов и испытательных стендов для проверки конструкторских решений. Математическая сторона этого этапа связана с разработкой автоматизированных систем подготовки технической документации. Математические модели уточняют по мере детализации и уточнения граничных условий задач конструирования.

Одновременно с проектированием решаются конструкторско-технологические задачи выбора материалов, назначения технологий изготовления и контроля. В области конструкционного материаловедения используют экспериментальное определение физико-механических свойств на лабораторных образцах как при стандартных испытаниях, так и при испытаниях в условиях, имитирующих эксплуатационные. При изготовлении высокоответственных деталей и узлов из новых материалов (высокопрочные коррозионно- и радиационно стойкие, плакированные, композиционные и др.) необходимо проводить специализированные испытания по определению предельных состояний и критериев повреждения. Математическое моделирование используют для построения имитационных моделей механического поведения материалов в различных условиях нагружения с учетом технологии получения материалов и формообразования деталей машин. Имитационные модели используют при выполнении сложного математического анализа тепловых, диффузионных, электромагнитных и других явлений, сопутствующих новым технологиям.

На основе физических и имитационных моделей получают сложный комплекс физико-механических свойств, характеристики которых должны использоваться при создании на базе ЭВМ банков данных о современных и перспективных материалах.
На этапе разработки технологии изготовления деталей, узлов и машин в целом физическое моделирование используют при лабораторной и опытно-промышленной отработке технологических процессов как традиционных (механообработка, литье и др.) , так и новых (лазерная обработка, плазменная, взрывная, магнитно-импульсная и др.) .

Параллельно с технологическими процессами разрабатываются физические модели, а также принципы контроля и дефектоскопии материалов и готовых изделий. Математические модели технологических процессов позволяют решать сложные задачи теплопроводности, термоупругости, сверхпластичности, волновых и других явлений с целью рационального выбора для данных деталей эффективных методов и параметров обработки.

На этапе создания машин и конструкций , когда осуществляется доводка и испытания головных образцов и опытных партий, физическое моделирование предусматривает проведение стендовых и натурных испытаний. Стендовые испытания обеспечивают высокую информативность и сокращают сроки доводки опытных образцов изделий массового и крупносерийного производства. Натурные испытания* необходимы для оценки работоспособности и надежности уникальных изделий на предельных режимах. При этом задачами математического моделирования становятся алгоритмы и программы управления испытаниями. Анализ получаемой экспериментальной информации следует проводить на ЭВМ в реальном масштабе времени.

При эксплуатации машин физическое моделирование используют для диагностики состояния и обоснования продления ресурса безопасной работы. Математическое моделирование на этом этапе имеет- целью построение моделей эксплуатационных повреждений по комплексу принятых при проектировании критериев: Проработка таких моделей выполняется в настоящее время для объектов атомного и теплового энергетического машиностроения, ракетной и авиационной техники и других объектов.

Математическое моделирование позволяет автоматизировать управление рабочими режимами с помощью ЭВМ по заданным программам, обеспечить оптимальное регулирование переходных процессов и исключить с помощью автоматизированных систем защиты достижение предельных ситуаций, ведущих к аварийным отказам.

Физическое и математическое моделирование

Так как понятие «моделирование» является достаточно общим и универсальным, к числу способов моделирования относятся столь различные подходы как, например, метод мембранной аналогии (физическое моделирование) и методы линейного программирования (оптимизационное математическое моделирование). Для того чтобы упорядочить употребление термина «моделирование» вводят классификацию различных способов моделирования. В наиболее общей форме выделяются две группы различных подходов к моделированию, определяемых понятиями «физическое моделирование» и «идеальное моделирование».

Физическое моделирование осуществляется путем воспроизведения исследуемого процесса на модели, имеющей в общем случае отличную от оригинала природу, но одинаковое математическое описание процесса функционирования.

Совокупность подходов к исследованию сложных систем, определяемая термином «математическое моделирование », является одной из разновидностей идеального моделирования. Математическое моделирование основано на использовании для исследования системы совокупности математических соотношений (формул, уравнений, операторов и т.д.), определяющих структуру исследуемой системы и ее поведение.

Математическая модель - это совокупность математических объектов (чисел, символов, множеств и т.д.), отражающих важнейшие для исследователя свойства технического объекта, процесса или системы.

Математическое моделирование - это процесс создания математической модели и оперирования ею с целью получения новой информации об объекте исследования.

Построение математической модели реальной системы, процесса или явления предполагает решение двух классов задач, связанных с построением «внешнего» и «внутреннего» описания системы. Этап, связанный с построением внешнего описания системы называется макроподходом. Этап, связанный с построением внутреннего описания системы называется микроподходом.

Макроподход - способ, посредством которого производится внешнее описание системы. На этапе построения внешнего описания делается упор на совместное поведение всех элементов системы, точно указывается, как система откликается на каждое из возможных внешних (входных) воздействий . Система рассматривается как «черный ящик», внутреннее строение которого неизвестно. В процессе построения внешнего описания исследователь имеет возможность, воздействуя различным образом на вход системы, анализировать ее реакцию на соответствующие входные воздействия. При этом степень разнообразия входных воздействий принципиальным образом связана с разнообразием состояний выходов системы. Если на каждую новую комбинацию входных воздействий система реагирует непредсказуемым образом, испытание необходимо продолжать. Если на основании полученной информации может быть построена система, в точности повторяющая поведение исследуемой, задачу макроподхода можно считать решенной.

Итак, метод «черного ящика» состоит в том, чтобы выявить, насколько это возможно, структуру системы и принципы ее функционирования, наблюдая только входы и выходы. Подобный способ описания системы некоторым образом аналогичен табличному заданию функции.

При микроподходе структура системы предполагается известной, то есть предполагается известным внутренний механизм преобразования входных сигналов в выходные. Исследование сводится к рассмотрению отдельных элементов системы. Выбор этих элементов неоднозначен и определяется задачами исследования и характером исследуемой системы. При использовании микроподхода изучается структура каждого из выделенных элементов, их функции, совокупность и диапазон возможных изменений параметров.

Микроподход - способ, посредством которого производится внутреннее описание системы, то есть описание системы в функциональной форме.

Результатом этого этапа исследования должен явиться вывод зависимостей, определяющих связь между множествами входных параметров, параметров состояния и выходных параметров системы. Переход от внешнего описания системы к ее внутреннему описанию называют задачей реализации.

Лекция 1.

МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ

    Современное состояние проблемы моделирования систем

Понятия модели и моделирования

Моделирование можно рассматривать как замещение исследуемогообъекта (оригинала) его условным образом, описанием или другим объектом,именуемым моделью и обеспечивающим близкое к оригиналу поведениев рамках некоторых допущений и приемлемых погрешностей. Моделированиеобычно выполняется с целью познания свойств оригинала путем исследованияего модели, а не самого объекта. Разумеется, моделирование оправдано в томслучае когда оно проще создания самого оригинала или когда последний покаким-то причинам лучше вообще не создавать.

Под моделью понимается физический или абстрактный объект, свойствакоторого в определенном смысле сходны со свойствами исследуемого объекта.При этом требования к модели определяются решаемой задачей и имеющимисясредствами. Существует ряд общих требований к моделям:

2) полнота – предоставление получателю всей необходимой информации

об объекте;

3) гибкость – возможность воспроизведения различных ситуаций во всем

диапазоне изменения условий и параметров;

4) трудоемкость разработки должна быть приемлемой для имеющегося

времени и программных средств.

Моделирование – это процесс построения модели объекта и исследованияего свойств путем исследования модели.

Таким образом, моделирование предполагает 2 основных этапа:

1) разработка модели;

2) исследование модели и получение выводов.

При этом на каждом из этапов решаются разные задачи и используются

отличающиеся по сути методы и средства.

На практике применяют различные методы моделирования. В зависимостиот способа реализации, все модели можно разделить на два больших класса:физические и математические.

Математическое моделирование принято рассматривать как средствоисследования процессов или явлений с помощью их математических моделей.

Под физическим моделированием понимается исследование объектов иявлений на физических моделях, когда изучаемый процесс воспроизводятс сохранением его физической природы или используют другое физическоеявление, аналогичное изучаемому. При этом физические модели предполагают, как правило, реальное воплощение тех физических свойстворигинала, которые являются существенными в конкретной ситуации.Например, при проектировании нового самолета создается его макет,обладающий теми же аэродинамическими свойствами; при планированиизастройки архитекторы изготавливают макет, отражающий пространственноерасположение ее элементов. В связи с этим физическое моделированиеназывают также макетированием .

Полунатурное моделирование представляет собой исследованиеуправляемых систем на моделирующих комплексах с включением в составмодели реальной аппаратуры. Наряду с реальной аппаратурой в замкнутуюмодель входят имитаторы воздействий и помех, математические моделивнешней среды и процессов, для которых неизвестно достаточно точноематематическое описание. Включение реальной аппаратуры или реальныхсистем в контур моделирования сложных процессов позволяет уменьшитьаприорную неопределенность и исследовать процессы, для которых нет точногоматематического описания. С помощью полунатурного моделированияисследования выполняются с учетом малых постоянных времени инелинейностей, присущих реальной аппаратуре. При исследовании моделей свключением реальной аппаратуры используется понятие динамическогомоделирования , при исследовании сложных систем и явлений -эволюционного , имитационного и кибернетического моделирования .

Очевидно, действительная польза от моделирования может быть полученатолько при соблюдении двух условий:

1) модель обеспечивает корректное (адекватное) отображение свойств

оригинала, существенных с точки зрения исследуемой операции;

2) модель позволяет устранить перечисленные выше проблемы, присущие

проведению исследований на реальных объектах.

2. Основные понятия математического моделирования

Решение практических задач математическими методами последовательноосуществляется путем формулировки задачи (разработки математическоймодели), выбора метода исследования полученной математической модели,анализа полученного математического результата. Математическаяформулировка задачи обычно представляется в виде геометрических образов,функций, систем уравнений и т.п. Описание объекта (явления) может бытьпредставлено с помощью непрерывной или дискретной, детерминированнойили стохастической и другими математическими формами.

Теория математического моделирования обеспечивает выявлениезакономерностей протекания различных явлений окружающего мира илиработы систем и устройств путем их математического описания имоделирования без проведения натурных испытаний. При этом используютсяположения и законы математики, описывающие моделируемые явления,системы или устройства на некотором уровне их идеализации.

Математическая модель (ММ) представляет собой формализованноеописание системы (или операции) на некотором абстрактном языке, например,в виде совокупности математических соотношений или схемы алгоритма,т. е. такое математическое описание, которое обеспечивает имитацию работысистем или устройств на уровне, достаточно близком к их реальномуповедению, получаемому при натурных испытаниях систем или устройств.

Любая ММ описывает реальный объект, явление или процесс с некоторойстепенью приближения к действительности. Вид ММ зависит как от природыреального объекта, так и от задач исследования.

Математическое моделирование общественных, экономических,биологических и физических явлений, объектов, систем и различных устройствявляется одним из важнейших средств познания природы и проектированиясамых разнообразных систем и устройств. Известны примеры эффективногоиспользования моделирования в создании ядерных технологий, авиационных иаэрокосмических систем, в прогнозе атмосферных и океанических явлений,погоды и т.д.

Однако для таких серьезных сфер моделирования нередко нужнысуперкомпьютеры и годы работы крупных коллективов ученых по подготовкеданных для моделирования и его отладки. Тем не менее, и в этом случаематематическое моделирование сложных систем и устройств не толькоэкономит средства на проведение исследований и испытаний, но и можетустранить экологические катастрофы – например, позволяет отказаться отиспытаний ядерного и термоядерного оружия в пользу его математическогомоделирования или испытаний аэрокосмических систем перед их реальнымиполетами.Между тем математическое моделирование на уровне решения болеепростых задач, например, из области механики, электротехники, электроники,радиотехники и многих других областей науки и техники в настоящее времястало доступным выполнять на современных ПК. А при использованииобобщенных моделей становится возможным моделирование и достаточносложных систем, например, телекоммуникационных систем и сетей,радиолокационных или радионавигационных комплексов.

Целью математического моделирования является анализ реальныхпроцессов (в природе или технике) математическими методами. В своюочередь, это требует формализации ММ процесса, подлежащего исследованию.Модель может представлять собой математическое выражение, содержащеепеременные, поведение которых аналогично поведению реальной системы.Модель может включать элементы случайности, учитывающие вероятностивозможных действий двух или большего числа «игроков», как, например, втеории игр; либо она может представлять реальные переменные параметрывзаимосвязанных частей действующей системы.

Математическое моделирование для исследования характеристик системможно разделить на аналитическое, имитационное и комбинированное. В своюочередь, ММ делятся на имитационные и аналитические.

Аналитическое моделирование

Для аналитического моделирования характерно, что процессыфункционирования системы записываются в виде некоторых функциональныхсоотношений (алгебраических, дифференциальных, интегральных уравнений). Аналитическая модель может быть исследована следующими методами:

1) аналитическим, когда стремятся получить в общем виде явныезависимости для характеристик систем;

2) численным, когда не удается найти решение уравнений в общем виде иих решают для конкретных начальных данных;

3) качественным, когда при отсутствии решения находят некоторые егосвойства.

Аналитические модели удается получить только для сравнительно простыхсистем. Для сложных систем часто возникают большие математическиепроблемы. Для применения аналитического метода идут на существенноеупрощение первоначальной модели. Однако исследование на упрощенноймодели помогает получить лишь ориентировочные результаты. Аналитическиемодели математически верно отражают связь между входными и выходнымипеременными и параметрами. Но их структура не отражает внутреннююструктуру объекта.

При аналитическом моделировании его результаты представляются в видеаналитических выражений. Например, подключив RC -цепь к источникупостоянного напряжения E (R , C и E - компоненты данной модели), мыможем составить аналитическое выражение для временной зависимостинапряжения u (t ) на конденсаторе C :

Это линейное дифференциальное уравнение (ДУ) и являетсяаналитической моделью данной простой линейной цепи. Его аналитическоерешение, при начальном условии u (0) = 0 , означающем разряженныйконденсатор C в момент начала моделирования, позволяет найти искомуюзависимость – в виде формулы:

u (t ) = E (1− p (- t / RC )). (2)

Однако даже в этом простейшем примере требуются определенные усилиядля решения ДУ (1) или для применения систем компьютерной математики (СКМ) с символьными вычислениями – систем компьютернойалгебры. Для данного вполне тривиального случая решение задачимоделирования линейной RC -цепи дает аналитическое выражение (2)достаточно общего вида – оно пригодно для описания работы цепи при любыхноминалах компонентов R , C и E , и описывает экспоненциальный зарядконденсатора C через резистор R от источника постоянного напряжения E .

Безусловно, нахождение аналитических решений при аналитическоммоделировании оказывается исключительно ценным для выявления общихтеоретических закономерностей простых линейных цепей, систем и устройств.Однако его сложность резко возрастает по мере усложнения воздействий намодель и увеличения порядка и числа уравнений состояния, описывающихмоделируемый объект. Можно получить более или менее обозримыерезультаты при моделировании объектов второго или третьего порядка, но ужепри большем порядке аналитические выражения становятся чрезмерногромоздкими, сложными и трудно осмысляемыми. Например, даже простойэлектронный усилитель зачастую содержит десятки компонентов. Тем неменее, многие современные СКМ, например, системы символьной математикиMaple, Mathematica или среда MATLAB , способны в значительноймере автоматизировать решение сложных задач аналитическогомоделирования.

Одной из разновидностей моделирования является численное моделирование, которое заключается в получении необходимыхколичественных данных о поведении систем или устройств каким-либоподходящим численным методом, таким как методы Эйлера илиРунге-Кутта. На практике моделирование нелинейных систем и устройствс использованием численных методов оказывается намного болееэффективным, чем аналитическое моделирование отдельных частных линейныхцепей, систем или устройств. Например, для решения ДУ (1) или систем ДУв более сложных случаях решение в аналитическом виде не получается, но поданным численного моделирования можно получить достаточно полныеданные о поведении моделируемых систем и устройств, а также построитьграфики описывающих это поведение зависимостей.

Имитационное моделирование

Приимитационном 10имоделировании реализующий модель алгоритмвоспроизводит процесс функционирования системы во времени. Имитируютсяэлементарные явления, составляющие процесс, с сохранением их логическойструктуры и последовательности протекания во времени.

Основным преимуществом имитационных моделей по сравнениюсаналитическими является возможность решения более сложных задач.

Имитационные модели позволяют легко учитывать наличие дискретных илинепрерывных элементов, нелинейные характеристики, случайные воздействияи др. Поэтому этот метод широко применяется на этапе проектированиясложных систем. Основным средством реализации имитационногомоделирования служит ЭВМ, позволяющая осуществлять цифровоемоделирование систем и сигналов.

В связи с этим определим словосочетание «компьютерноемоделирование », которое все чаще используется в литературе. Будем полагать,что компьютерное моделирование - это математическое моделированиес использованием средств вычислительной техники. Соответственно,технология компьютерного моделирования предполагает выполнениеследующих действий:

1) определение цели моделирования;

2) разработка концептуальной модели;

3) формализация модели;

4) программная реализация модели;

5) планирование модельных экспериментов;

6) реализация плана эксперимента;

7) анализ и интерпретация результатов моделирования.

При имитационном моделировании используемая ММ воспроизводиталгоритм («логику») функционирования исследуемой системы во времени приразличных сочетаниях значений параметров системы и внешней среды.

Примером простейшей аналитической модели может служить уравнениепрямолинейного равномерного движения. При исследовании такого процессас помощью имитационной модели должно быть реализовано наблюдениеза изменением пройденного пути с течением времени.Очевидно, в одних случаях более предпочтительным являетсяаналитическое моделирование, в других - имитационное (или сочетание того идругого). Чтобы выбор был удачным, необходимо ответить на два вопроса.

С какой целью проводится моделирование?

К какому классу может быть отнесено моделируемое явление?

Ответы на оба эти вопроса могут быть получены в ходе выполнения двухпервых этапов моделирования.

Имитационные модели не только по свойствам, но и по структуресоответствуют моделируемому объекту. При этом имеется однозначное и явноесоответствие между процессами, получаемыми на модели, и процессами,протекающими на объекте. Недостатком имитационного моделированияявляется большое время решения задачи для получения хорошей точности.

Результаты имитационного моделирования работы стохастическойсистемы являются реализациями случайных величин или процессов. Поэтомудля нахождения характеристик системы требуется многократное повторение ипоследующая обработка данных. Чаще всего в этом случае применяетсяразновидность имитационного моделирования - статистическое

моделирование (или метод Монте-Карло), т.е. воспроизведение в моделяхслучайных факторов, событий, величин, процессов, полей.

По результатам статистического моделирования определяют оценкивероятностных критериев качества, общих и частных, характеризующихфункционирование и эффективность управляемой системы. Статистическоемоделирование широко применяется для решения научных и прикладных задачв различных областях науки и техники. Методы статистическогомоделирования широко применяются при исследовании сложныхдинамических систем, оценке их функционирования и эффективности.

Заключительный этап статистического моделирования основан наматематической обработке полученных результатов. Здесь используют методыматематической статистики (параметрическое и непараметрическое оценивание,проверку гипотез). Примером параметрической оценки являетсявыборочное среднее показателя эффективности. Среди непараметрическихметодов большое распространение получил метод гистограмм .

Рассмотренная схема основана на многократных статистическихиспытаниях системы и методах статистики независимых случайных величин.Эта схема является далеко не всегда естественной на практике и оптимальнойпо затратам. Сокращение времени испытания систем может быть достигнуто засчет использования более точных методов оценивания. Как известно изматематической статистики, наибольшую точность при заданном объемевыборки имеют эффективные оценки. Оптимальная фильтрация и методмаксимального правдоподобия дают общий метод получения таких оценок.В задачах статистического моделирования обработка реализацийслучайных процессов необходима не только для анализа выходных процессов.

Весьма важен также и контроль характеристик входных случайныхвоздействий. Контроль заключается в проверке соответствия распределенийгенерируемых процессов заданным распределениям. Эта задача частоформулируется как задача проверки гипотез .

Общей тенденцией моделирования с использованием ЭВМ у сложныхуправляемых систем является стремление к уменьшению временимоделирования, а также проведение исследований в реальном масштабевремени. Вычислительные алгоритмы удобно представлять в рекуррентнойформе, допускающей их реализацию в темпе поступления текущей информации.

ПРИНЦИПЫ СИСТЕМНОГО ПОДХОДА В МОДЕЛИРОВАНИИ

    Основные положения теории систем

Основные положения теории систем возникли в ходе исследованиядинамических систем и их функциональных элементов. Под системой понимают группу взаимосвязанных элементов, действующих совместнос целью выполнения заранее поставленной задачи. Анализ систем позволяетопределить наиболее реальные способы выполнения поставленной задачи,обеспечивающие максимальное удовлетворение поставленных требований.

Элементы, составляющие основу теории систем, не создаются с помощьюгипотез, а обнаруживаются экспериментальным путем. Для того чтобы начатьпостроение системы, необходимо иметь общие характеристикитехнологических процессов. Это же справедливо и в отношении принциповсоздания математически сформулированных критериев, которым долженудовлетворять процесс или его теоретическое описание. Моделированиеявляется одним из наиболее важных методов научного исследования иэкспериментирования.

При построении моделей объектов используется системный подход,представляющий собой методологию решения сложных задач, в основекоторой лежит рассмотрение объекта как системы, функционирующейв некоторой среде. Системный подход предполагает раскрытие целостностиобъекта, выявление и изучение его внутренней структуры, а также связейс внешней средой. При этом объект представляется как часть реального мира,которая выделяется и исследуется в связи с решаемой задачей построениямодели. Кроме этого, системный подход предполагает последовательныйпереход от общего к частному, когда в основе рассмотрения лежит цельпроектирования, а объект рассматривается во взаимосвязи с окружающейсредой.

Сложный объект может быть разделен на подсистемы, представляющие собой части объекта, удовлетворяющие следующим требованиям:

1) подсистема является функционально независимой частью объекта. Онасвязана с другими подсистемами, обменивается с ними информацией иэнергией;

2) для каждой подсистемы могут быть определены функции или свойства,не совпадающие со свойствами всей системы;

3) каждая из подсистем может быть подвергнута дальнейшему делению доуровня элементов.

В данном случае под элементом понимается подсистема нижнего уровня,дальнейшее деление которой нецелесообразно с позиций решаемой задачи.

Таким образом, систему можно определить как представление объектав виде набора подсистем, элементов и связей с целью его создания,исследования или усовершенствования. При этом укрупненное представлениесистемы, включающее в себя основные подсистемы и связи между ними,называется макроструктурой, а детальное раскрытие внутреннего строениясистемы до уровня элементов – микроструктурой.

Наряду с системой обычно существует надсистема – система болеевысокого уровня, в состав которой входит рассматриваемый объект, причёмфункция любой системы может быть определена только через надсистему.

Следует выделить понятие среды как совокупности объектов внешнего мира,существенно влияющих на эффективность функционирования системы, но невходящих в состав системы и ее надсистемы.

В связи с системным подходом к построению моделей используетсяпонятие инфраструктуры, описывающей взаимосвязи системы с ееокружением (средой).При этом выделение, описание и исследование свойств объекта,существенных в рамках конкретной задачи называется стратификациейобъекта, а всякая модель объекта является его стратифицированнымописанием.

Для системного подхода важным является определение структуры системы, т.е. совокупности связей между элементами системы, отражающих ихвзаимодействие. Для этого вначале рассмотрим структурный ифункциональный подходы к моделированию.

При структурном подходе выявляются состав выделенных элементов системы и связи между ними. Совокупность элементов и связей позволяет судить о структуре системы. Наиболее общим описанием структуры является топологическое описание. Оно позволяет определить составные части системыи их связи с помощью графов. Менее общим является функциональное описание, когда рассматриваютсяо тдельные функции, т. е. алгоритмы поведения системы. При этом реализуетсяфункциональный подход, определяющий функции, которые выполняетсистема.

На базе системного подхода может быть предложена последовательностьразработки моделей, когда выделяют две основные стадии проектирования:макропроектирование и микропроектирование.

На стадии макропроектирования строится модель внешней среды,выявляются ресурсы и ограничения, выбирается модель системы и критериидля оценки адекватности.

Стадия микропроектирования в значительной степени зависит отконкретного типа выбранной модели. В общем случае предполагает созданиеинформационного, математического, технического и программногообеспечения системы моделирования. На этой стадии устанавливаютсяосновные технические характеристики созданной модели, оцениваются времяработы с ней и затраты ресурсов для получения заданного качества модели.

Независимо от типа модели при ее построении необходиморуководствоваться рядом принципов системного подхода:

1) последовательное продвижение по этапам создания модели;

2) согласование информационных, ресурсных, надежностных и другиххарактеристик;

3) правильное соотношение различных уровней построения модели;

4) целостность отдельных стадий проектирования модели.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама