THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

(ПВХ) относится к термопластичным синтетическим материалам. В зависимости от условий полимеризации образуются продукты различной степени полимеризации с различными физико-химическими свойствами.

Материалы на основе ПВХ вырабатываются двух видов:

– с применением пластификатора (пластифицированный ПВХ);

– без применения пластификатора (не пластифицированный ПВХ).

Другие обозначения:
FPVC, PVC-F, PVC-P (пластифицированный);
RPVC, PVC-R, PVC-U (непластифицированный).

По внешнему виду товарный ПВХ представляет собой порошок белого цвета, без вкуса и запаха. ПВХ достаточно прочен, обладает хорошими диэлектрическими свойствами. Химическая формула ПВХ (-СН2-CHCl-)n , где n – степень полимеризации.

ПВХ не растворим в воде, устойчив к действию кислот, щелочей, спиртов, минеральных масел, набухает и растворяется в эфирах, кетонах, хлорированных и ароматических углеводородах. ПВХ совмещается со многими пластификаторами (например фталатами, себацинатами, фосфатами), стоек к окислению и практически не горюч. Поливинилхлорид обладает невысокой теплостойкостью, при нагревании выше 100 ºС заметно разлагается с выделением HCL. Для повышения теплостойкости и улучшения растворимости ПВХ подвергают хлорированию.

Таблица №1: Основные физико-химические свойства ПВХ

Экологические показатели

ПВХ слаботоксичное вещество. Продукты разложения вызывают раздражение верхних дыхательных путей и слизистых оболочек глаза. ПДК в воздухе производственных помещений б мг/м3. Осевшая пыль пожароопасна. При нагревании выше 150 °С начинается деструкция полимера с выделением хлористого водорода и окиси углерода, вредно действующих на организм человека.

ПВХ аморфный материал, свойства которого сильно зависят от метода получения. ПВХ получают суспензионным (suspension), эмульсионным (emulsion) методами, полимеризацией в массе - блочным методом (mass, bulk).

Суспензионный ПВХ или ПВХ С (PVC-S) имеет сравнительно узкое молекулярно-массовое распределение, малую степень разветвленности, более высокую степень чистоты, низкое водопоглощение, хорошие диэлектрические свойства, лучшую термостойкость и светостойкость.

Эмульсионный ПВХ или ПВХ Е (PVC-E) характеризуется широким молекулярно-массовым распределением, высоким содержанием примесей, высоким водопоглощением, худшими диэлектрическими характеристиками, худшей термостойкостью и светостойкостью.

Максимальная температура длительной эксплуатации: 60 оС. FPVC (пластифицированный) выдерживает охлаждение до -60 -3 оС, RPVC - до -15 оС. Температура стеклования: 70 - 105 оС. Имеет широкий разброс механических характеристик. FPVC - эластичный материал. RPVC имеет высокую прочность и жесткость.

Материал на основе суспензионного ПВХ имеет хорошие диэлектрические характеристики (но хуже, чем у PE, PP, PS).

RPVC (непластифицированный) имеет высокую химическую стойкость, стоек к действию бензина, масел, разбавленных кислот и щелочей. Растворяется в при нагревании в дихлорэтане, хлорбензоле, тетрагидрофуране. FPVC отличается меньшей химической стойкостью.

Впервые ПВХ был получен в 1972 году Бауманом при действии солнечного света на винилхлорид. Промышленный синтез ПВХ был осуществлен в 1930 году в Германии.

Поливинилхлорид или ПВХ - современный синтетический полимер, относящийся к числу так называемых базовых полимеров. В качестве сырья для ПВХ используют хлор - 57% и нефть - 43%. Таким образом ПВХ меньше, чем другие базовые полимеры зависит от нефтяного сырья. Это играет очень важную роль в его ценообразовании.

Основным сырьем для производства ПВХ служат хлор, получаемый путем электролиза раствора поваренной соли, и этилен. Процесс производства ПВХ можно вкратце описать следующим образом: в процессе электролиза поваренная соль, растворенная в воде, под воздействием электрического заряда разлагается на хлор, каустическую соду и водород. Отдельно, из нефти или газа с помощью процесса, называемого крекингом, производят этилен. Следующим этапом является соединения этилена и хлора. В результате получают дихлорид этилена, из которого потом про¬изводят мономер винилхлорида, являющийся базовым элементом в производстве поливинилхлорида (ПВХ). В процессе полимеризации молекулы мономера винилхлорида объединяются в длинные цепочки ПВХ. Получающийся ПВХ-гранулят тоже является, по сути, сырьем - к нему добавляют различные вещества для придания материалу самых разнообразных свойств. Именно это позво¬ляет находить применение для ПВХ почти в каждой сфере нашей повседневной жизни.

ПВХ был одним из первых полимеров, получивших широкое коммерческое распространение, и на сегодня он является одним и самых популярных. Сегодня ПВХ занимает второе место после полиэтилена по потреблению среди синтетических полимеров. ПВХ является хорошим примером фантастической универсальности полимеров. Из ПВХ производят буквально все - от медицинских емкостей для крови до детских игрушек, изоляционных материалов и оконных профилей.

В промышленности полимеризация ПВХ производится суспензионным, блочным (полимеризация в массе) и эмульсионным методами.

Суспензионный ПВХ перерабатывается в изделия вальцеванием (каландрованием), экструзией, литьем под давлением и прессованием ПВХ, полученный в массе или суспензии, используется для производства жестких, а также полумягких и мягких, так называемых пластифицированных, пластических масс.

Эмульсионный ПВХ перерабатывается в изделия прессованием, литьем под давлением, вальцеванием, экструзией, а также в мягкие изделия через пасты (пластизоли). Эмульсионный поливинилхлорид

Массовый ПВХ применяется для изготовления различных изделий вальцеванием, экструзией и прессованием.

Доля эмульсионного ПВХ постепенно уменьшается, хотя он находит применение для получения пластизолей. Растет доля суспензионного ПВХ, применяемого для изготовления труб, листов, пленки, бутылей, оконных рам и других изделий. Доля суспензионного ПВХ в общем объеме производства составляет 75-80 %.

Сферы применения ПВХ

ПВХ используется в медицине уже более 50 лет. При этом его потребление в этой сфере постоянно растет. Толчком к широкому применению ПВХ в этой области стала насущная потребность заменить резину и стекло предварительно стерилизованными предметами одноразового (и не только) использования. Со временем ПВХ стал наиболее популярным полимером в медицине благодаря химической стабильности и инертности. Продукция из него крайне разнообразна и легко производима. Медицинские продукты из ПВХ могут быть использованы внутри человеческого тела, легко стерилизуются, не трескаются и не протекают.

При всем предубеждении против полимеров вообще и ПВХ в частности, этому материалу удалось пройти бесчисленное количество тестов, результатом которых стало принятие ПВХ большинством зравоохранительных организаций мира.

Вот далеко не полный перечень медицинской продукции, производимой из ПВХ: контейнеры для крови и внутренних органов, катетеры, трубки для кормления, приборы для измерения давления, хирургически шины, блистер-упаковка для таблеток и пилюль.

Основные преимущества ПВХ, позволившие этому материалу стать наиболее применимым в медицине.

Одним из основных требований к медицинской продукции является ее соответствие токсикологическим стандартам. Принятие ПВХ к использованию в медицине странами Евросоюза является свидетельством его полной медицинской безопасности. Материал, используемый в медицине, должен обладать следующим важным свойством -при контакте с разнообразными жидкостями его композиция должна оставаться неизменной, именно таким материалом является ПВХ. Когда полимерный материал контактирует с тканью или кровью пациента, крайне важен показатель химической совместимости. ПВХ характеризуется высокой биосовместимостью которая постоянно растет благодаря новым разработкам в технологии его производства. Благодаря своим физическим характеристикам продукты из ПВХ могут обладать высокой про¬зрачностью, продукции из ПВХ может быть придана любая цветовая окраска. Продукция из ПВХ также отличается высокой гибкостью и прочностью даже при изменяющихся внешних условиях (например, температуре). ПВХ легко совместим с практически всеми фармацевтическими продуктами. Он также устойчив к воде и химическим реакциям. Из ПВХ легко производить упаковку любой формы, будь то трубы, гибкая или жесткая упаковка.

ПВХ - один из самых дешевых материалов. Это также играет важную роль при выборе материала для применения в производстве медицинской продукции.

ПВХ в транспорте

ПВХ широко используется в качестве материала для производства автотранспорта. В этой области он является вторым по популярности полимером (после полипропилена).

В автомобилестроении ПВХ используется для производства покрытий, уплотняющих материалов, кабельной изоляции, приборных и дверных панелей, подлокотников и т.д.

Благодаря использованию ПВХ современные автомобили более живучи. Средний срок жизни современного автомобиля - 17 лет. Еще в 70-х годах прошлого века эта цифра не превышала 11 лет. Увеличение срока эксплуатации автомобиля означает реальную экономию природных ресурсов (если машины служат дольше, значит производить их можно меньше).

Использование в автомобилестроении полимеров вообще и ПВХ в частности ведет к снижению затрат топлива. Так как полимеры, не уступая традиционным материалам (металлу, стеклу) по прочностным свойствам, весят меньше – без ущерба для качества автомобиля снижается его вес, а, следовательно, и количество топлива, необходимое для работы двигателя.

Использование ПВХ также повышает безопасность машин. ПВХ применяется в производстве по¬душек безопасности, защитных панелей и проч., предохраняющих пассажиров от травм при авариях. Кроме того, устойчивость ПВХ к действию огня также повышает безопасность автомобиля.

Эффективно использование ПВХ в дизайнерских целях. Как уже указывалось выше, одним из свойств этого полимера является возможность производства из него продукции любой формы. Это дает возможность дизайнерам улучшать интерьер салона автомобиля. Материалам из ПВХ может быть придана привлекательность, недавние разработки позволили создавать материалы, на ощупь напоминающие натуральную кожу. Использование ПВХ для отделки салона снижает шум во время движения.

Использование ПВХ приводит к значительной экономии средств - ПВХ дешевле традиционных материалов, не уступая им в качестве.

Сегодня в Западной Европе каждый новый автомобиль содержит примерно 16 кг ПВХ. Если взять ориентировочные цены на ПВХ, произ¬водственные затраты и цены на автомобили, это означает, что использование ПВХ в автомобилестроении Западной Европы может быть оценено в 800 млн. евро. в год. Автомобильный рынок Западной Европы - примерно 35% мирового, следовательно в целом по миру использование ПВХ в автостроение может быть оценено в почти 2,5 млрд. евро.

ПВХ в строительстве

Из всех полимеров именно ПВХ имеет наиболее широкое применение в строительстве. В Европе в этой отрасли используется более 50% всего производимого ПВХ, в США - более 60%. И снова таки основными преимуществами ПВХ являются все те же способности производства разнообразных видов продукции с различными свойствами. Главными конкурентами ПВХ являются глина и дерево.

Главные качества ПВХ в строительстве: износоустойчивость, механическая прочность, жесткость, небольшая масса, устойчивость к коррозии, химическому, погодному и температурному воздействию. ПВХ - отличный огнеупорный материал. Он с трудом поддается возгоранию. И прекращает гореть и тлеть сразу же после того, как исчезает источник высокой температуры. Основная причина - высокое содержание хлора. Это способствует повышению пожарной безопасности построенных объектов. ПВХ не проводит электричество и, таким образом, идеален в качестве изоляционного материала. Основной чертой строительных материалов из ПВХ является их долговечность. 85% всех строительных материалов из ПВХ используются для долгосрочных сооружений. Более 75% труб, произведенных из ПВХ, имеют срок службы более 40 лет (потенциал новых разработок в этой области увеличивает этот срок до 100 лет!). Аналогичные показатели у более чем 60% сделанных из и кабельной изоляции.

Опять же ПВХ существенно дешевле конкурирующих материалов. Стройматериалы из ПВХ легче, чем стройматериалы из бетона, железа и стали. Это вновь приводит нас к мысли об экономической выгоде - на обработку продукции из ПВХ затрачивается меньше энергии, меньше транспортных услуг (а, следовательно, и топлива). Долговечность материала также позволяет экономить - трубы, окна и т.д. приходиться менять реже. Теплоизоляционные свойства ПВХ позволяют затрачивать меньше энергии на отопление помещений.

ПВХ в игрушках

Широко используется ПВХ и в производстве детских . Перечень (далеко неполный) игрушек, производимых из ПВХ: куклы, утята для ванной, надувные пляжные игрушки, «лягушатники», мячи и т.д. В целом можно сказать, что в производстве почти всех «мягких» игрушек используется ПВХ.

ПВХ в потребительских товарах

Из ПВХ производятся многие потребительские товары. Например, мебель (для нее используется жесткий ПВХ), напольные покрытия (гибкий ПВХ), обувь, кредитные и телефонные карточки, спортивное оборудование и оснащение (мячи, экипировка), одежда, сумки, рюкзаки и т.д.

ПВХ в упаковке

Приведенные выше многочисленные и разнообразные свойства ПВХ делают его очень привлекательным материалом для производства упаковки. В Европе каждый год не менее 250 тыс. тонн ПВХ используется для производства упаковочных материалов. Основные сферы применения: жесткая пленка (51%), бутылки (35%), гибкая пленка (11%) и бутылочные крышки (3%). В качестве примеров использования ПВХ в упаковке можно привести туалетные принадлежности, тюбики для зубной пасты, мобильные телефоны и аксессуары для них.

Иногда можно увидеть картину, как любители посидеть на природе в костре сжигают одноразовую пластиковую посуду, бутылки, пакеты и другой мусор, оставшийся после весело проведенного времени. Конечно, при таком способе избавления от мусора нет необходимости ехать на свалку и лес остается вроде бы чистым. Также можно встретить людей, которые используют пластик для создания поделок и плавят его в домашних условиях. Но насколько безобидно плавление пластика и его сжигание?

То, что сжигать некоторые виды пластика и плавить их небезопасно, должен знать каждый!

Многие изделия из пластмасс маркируются специальным знаком с цифрой, которая изменяется от 1 до 7. Каждое число соответствует конкретному типу полимерных материалов, за исключением 7, которое соответствует всем остальным материалам, которые нельзя отнести к первым 6. Пластмассы с 1 по 6 относятся к , т.е. они начинают размягчаться при нагревании. Различные типы пластмасс по-разному реагируют на огонь: некоторые начинают тлеть, некоторые плавятся, некоторые практически не реагируют.

Большинство пластмасс несет в себе потенциальную опасность выделения токсичных веществ, связанных с технологией ее производства и ее составом, но есть среди них и более безопасные виды.

1. PET или PETE (ПЭТ) – полиэтилентерефталат

ПЭТ – это наиболее распространенный пластик в пищевой промышленности, который чаще всего используется при производстве бутылок. Также он является очень популярным материалом для создания различных поделок. Можно найти множество способов . О промышленной переработке ПЭТ можно прочитать .

ПЭТ плавится при довольно высокой температуре – 260 °С, но при нагреве до 60 °C ПЭТ размягчается и теряет форму.

Опасность:
ПЭТ известен тем, что в нем содержится сурьма и канцерогены. При хранении воды в бутылках эти вещества могут попадать в нее, особенно при нагревании. Также эти вещества могут высвобождаться при горении или плавлении.

Заключение:
Существует потенциальная опасность высвобождения вредных веществ при сжигании или плавлении. Для создания поделки ПЭТ бутылки можно найти множество способов, не требующих термической обработки.
При необходимости деформации ПЭТ лучше нагреть его в кипящей воде – это безопаснее, чем вдыхать пары от нагреваемого всухую пластика. Также помните, что всегда надо работать в хорошо проветриваемых помещениях или на улице.

2. HDPE или ПНД– полиэтилен высокой плотности или полиэтилен низкого давления


flickr.com/Tom Magliery/CC BY 2.0

HDPE наиболее безопасный пластик. Его лучше всего использовать для создания поделок, поскольку он также является самым простым в обработке. Из этого пластика изготавливаются бутылки для молока и моющих средств.

Нужно знать:
Можно с уверенностью использовать HDPE контейнеры или бутылки для хранения воды, поскольку из них ничего не выщелачивается. HDPE довольно прочный пластик и не «тает», только при ОЧЕНЬ высокой температуре. Этот пластик может оказаться недостаточно гибким, но иногда это очень хорошо для создания жестких конструкций.

Заключение:
Этот вид пластика можно использовать без особых опасений. Плавление пластика происходит при температурах порядка 120-135 °С.

3. PVС или ПВХ – поливинилхлорид, также известен как винил

ПВХ является наиболее опасным пластиком , производимым на сегодняшний день. Большинство пластинок делается из винила. Несмотря на его опасность, многие люди, не зная о ней, нагревают и жгут ПВХ. Температура плавления ПВХ составляет 150 – 220°C, но деформироваться он начинает при 65 – 70 °С. О переработке ПВХ можно прочитать .

Опасность:
ПВХ выделяет канцерогены, а также свинец. Под воздействием тепла он выделяет диоксины , одни из самых опасных загрязняющих веществ и токсинов.

Заключение:
ПВХ можно использовать, но нагревать и жечь его ОЧЕНЬ ОПАСНО !!!
Опять же, при строгой необходимости плавления ПВХ лучше использовать кипящую воду и не подвергать его непосредственному воздействию пламени. Делать это, конечно, надо в хорошо проветриваемом помещении.

4. LDPE или ПВД – полиэтилен низкой плотности или полиэтилен высокого давления


flickr.com/ mag3737/CC BY-NC-SA 2.0

LDPE является еще одним безопасным пластиком. Из него делаются кнопки в приборах, также он используется для производства полиэтиленовой пленки, продуктовых сумок, мусорных пакетов и некоторых пищевых контейнеров.

Что нужно знать:
ПВД прочный материал, но менее крепкий, чем HDPE. Для его плавления также нужна немалая температура – 90 °С.

Заключение:
HDPE довольно безопасный в использовании пластик. Для плавления требуется довольно много тепла, при этом надо быть внимательным – если вы хотите именно расплавить материал, то пакеты, например, могут легко загореться.

5. PP или ПП – полипропилен

ПП довольно безопасный пластик, и используется при создании различных вещей, например, крышек для бутылок, дозаторов и пластиковой посуды. Он не так легко плавится, его температура плавления составляет 160 – 170 °С, но быстро нагревается. О переработке полипропилена можно прочитать в .

Обратите внимание:
Полипропилен вполне безопасен, однако некоторые исследования показали, что некоторые виды полипропилена могут выделять биоцид. Так что все же этим материалом надо пользоваться с осторожностью.

6. PS или ПС – полистирол

Из этого вида пластика изготавливается множество изделий, он применяется в одноразовой посуде, упаковке, детских игрушках и при изготовлении теплоизоляционных (например, пенопласта) и других строительных материалов. Хотелось бы надеяться, что все знают, что необходимо избегать нагревания пенополистирола, поскольку в нем содержится стирол. Информацию о переработке пенопласта можно найти в .

Температура плавления полстирола – 240 °C, но деформироваться начинает при 100 °C. При нагревании появляется характерный запах.

Опасность:
Выделяет опаснейший яд и канцероген стирол .

Заключение:
Никогда не нагревайте пенополистирол. В крайнем случае, делайте это в хорошо проветриваемом помещении.

7. OTHER или ДРУГОЕ – различные пластики, не указанные выше

К этим пластмассам относятся как безопасные, так и небезопасные пластики. Например, PLA относится к биоразлагаемым пластмассам, с этим пластиком можно работать вполне безопасно. Поликарбонат (ПК) не так безопасен, существуют исследования, подтверждающие, что он может выделять бисфенол А.

С пластиком без маркировки и с незнакомыми пластиками надо обращаться очень аккуратно, неизвестно из каких материалов они изготовлены и какую потенциальную опасность в себе несут.

Жечь пластик надо в хорошо проветриваемом месте, лучше на улице. ПВХ и ПС жечь нельзя.

(Просмотрели89 443 | Посмотрели сегодня 6)

Типы пластика. Термореактивный пластик и термопластик Как выполняется переработка полипропилена (ПП или PP)

Достаточно жесткий полимерный материал, с высокой температурой стеклования (+75°С). Для повышения эластичности и морозостойкости поливинилхлорида в него вводят пластификаторы.

Пластификаторы - органические жидкости с высокой температурой кипения и низкой температурой застывания, совмещающиеся с полимером в различных соотношениях. В качестве пластификаторов используют сложные эфиры фталевой, себациновой, фосфорной и других кислот (дибутилфталат, диоктилсебацинат, трикрезилфосфат и др.), а также различные полиэфирные пластификаторы.

При производственном смешивании поливинилхлорида с пластификатором и нагревании смеси в определенных технологических условиях происходит термическая пластификация полимера. Результатом этой реакции достигается более качественные пластические и эластические свойства полимера, особенно в охлажденном состоянии. Это можно объяснить нарушением или ослаблением межмолекулярного взаимодействия в результате проникновения пластификатора между макромолекулами.

На основе поливинилхлорида путем термической пластификации получают гибкие мягкие материалы - пластикаты, идущие на производство кабельной изоляции, плащей, обуви, а также поливинилхлоридные пасты, применяемые в производстве моющихся обоев, линолеума, клеенки и материалов, имитирующих кожу. Термической пластикацией поливинилхлорида, не содержащего пластификаторов, получают жесткие материалы в основном конструкционного и противокоррозионного назначения (листовой винипласт, пластмассовые трубы, профили и другие изделия). Термическая пластикация - процесс перемешивания и расплавления полимера в ходе переработки для повышения (или придания) пластических свойств.

При введении в поливинилхлорид порообразователей - динитрил азобисизомасляной кислоты (парофор4ХЗ-57 и др.) или при насыщении его газом образуются жесткие, полужесткие и эластичные материалы - пенопласты с закрытоячеистой структурой или поропласты с открытыми сообщающимися ячейками (открытопористой структурой). Жесткий газонаполненный поливинилхлорид применяют для тепло- и звукоизоляции в строительстве, авиа- и судостроении, а также для изготовления спасательных средств, буйков, плотов; эластичный - как амортизационный материал, а полужесткий -для изготовления полировальных кругов.

Поливинилхлорид обладает достаточно высокой химической стойкостью к действию кислот, щелочей и смазочных масел. Но при этом он обладает целым списком характерных недостатков для сложных полимеров: малая устойчивость к действию теплоты и света. Резкое понижение прочности при повышении температуры, а также присущая ему хладо-текучесть под влиянием длительного действия нагрузки ограничивают его применение, несмотря на высокие показатели механической прочности при нормальной температуре.

Основные физико-механические свойства прессованного порошка поливинилхлорида:

Применение поливинлхлорида

Материалы на основе ПВХ вырабатываются двух видов:

  • с применением пластификатора (пластифицированный ПВХ);
  • без применения пластификатора (не пластифицированный ПВХ).

Другие обозначения:

  • FPVC, PVC-F, PVC-P (пластифицированный);
  • RPVC, PVC-R, PVC-U (непластифицированный).

По внешнему виду товарный ПВХ представляет собой порошок белого цвета, без вкуса и запаха. ПВХ достаточно прочен, обладает хорошими диэлектрическими свойствами. Химическая формула ПВХ (-СН2-CHCl-)n , где n – степень полимеризации.

Как указывалось ранее, ПВХ не растворим в воде, устойчив к действию кислот, щелочей, спиртов, минеральных масел, набухает и растворяется в эфирах, кетонах, хлорированных и ароматических углеводородах. ПВХ совмещается со многими пластификаторами (например фталатами, себацинатами, фосфатами), стоек к окислению и практически не горюч. Поливинилхлорид обладает невысокой теплостойкостью, при нагревании выше 100 ºС заметно разлагается с выделением HCl. Для повышения теплостойкости и улучшения растворимости ПВХ подвергают хлорированию.

Поливинилхлорид является достаточно слаботоксичным веществом. Продукты разложения вызывают раздражение верхних дыхательных путей и слизистых оболочек глаза. ПДК в воздухе производственных помещений б мг/м 3 . Осевшая пыль пожароопасна. При нагревании выше 150°С начинается деструкция полимера с выделением хлористого водорода и окиси углерода, вредно действующих на организм человека.

ПВХ аморфный материал, свойства которого сильно зависят от метода получения. ПВХ получают:

  • суспензионным (suspension)
  • эмульсионным (emulsion) методами
  • полимеризацией в массе - блочным методом (mass, bulk).

Суспензионный ПВХ или ПВХ С (PVC-S) имеет сравнительно узкое молекулярно-массовое распределение, малую степень разветвленности, более высокую степень чистоты, низкое водопоглощение, хорошие диэлектрические свойства, лучшую термостойкость и светостойкость.

Эмульсионный ПВХ или ПВХ Е (PVC-E) характеризуется широким молекулярно-массовым распределением, высоким содержанием примесей, высоким водопоглощением, худшими диэлектрическими характеристиками, худшей термостойкостью и светостойкостью.

Максимальная температура длительной эксплуатации: 60°С. FPVC (пластифицированный) выдерживает охлаждение до -60°С, RPVC - до -15 оС. Температура стеклования: 70 - 105°С. Имеет широкий разброс механических характеристик. FPVC - эластичный материал. RPVC имеет высокую прочность и жесткость. Материал на основе суспензионного ПВХ имеет хорошие диэлектрические характеристики (но хуже, чем у PE, PP, PS).

Использование материалов из ПВХ в медицине

ПВХ применяется в медицине и при производстве медицинского инстурмента, оборудования и инвентаря уже более 50 лет . Толчком к широкому применению ПВХ в этой области стала насущная потребность заменить резину и стекло предварительно стерилизованными предметами одноразового (и не только) использования. Со временем ПВХ стал наиболее популярным полимером в медицине благодаря химической стабильности и инертности. Продукция из него крайне разнообразна и легко производима. Медицинские продукты из ПВХ могут быть использованы внутри человеческого тела, легко стерилизуются, не трескаются и не протекают.

Вот далеко не полный перечень медицинской продукции, производимой из ПВХ:

  • контейнеры для крови и внутренних органов
  • катетеры
  • трубки для кормления
  • приборы для измерения давления
  • хирургические перчатки и маски
  • хирургически шины
  • блистер-упаковка для таблеток и пилюль.

Основные преимущества ПВХ, позволившие этому материалу стать наиболее применимым в медицине.

Одним из основных требований к медицинской продукции является ее соответствие токсикологическим стандартам . Принятие ПВХ к использованию в медицине странами Евросоюза является свидетельством его полной медицинской безопасности. Материал, используемый в медицине, должен обладать следующим важным свойством -при контакте с разнообразными жидкостями его композиция должна оставаться неизменной, именно таким материалом является ПВХ. Когда полимерный материал контактирует с тканью или кровью пациента, крайне важен показатель химической совместимости.

ПВХ характеризуется высокой биосовместимостью которая постоянно растет благодаря новым разработкам в технологии его производства. Благодаря своим физическим характеристикам продукты из ПВХ могут обладать высокой про¬зрачностью, продукции из ПВХ может быть придана любая цветовая окраска. Продукция из ПВХ также отличается высокой гибкостью и прочностью даже при изменяющихся внешних условиях (например, температуре). ПВХ легко совместим с практически всеми фармацевтическими продуктами. Он также устойчив к воде и химическим реакциям. Из ПВХ легко производить упаковку любой формы, будь то трубы, гибкая или жесткая упаковка.

ПВХ - один из самых дешевых материалов. Это также играет важную роль при выборе материала для применения в производстве медицинской продукции.

Применение ПВХ в транспорте

ПВХ пластины широко используется в качестве материала для производства автотранспорта . В этой области он является вторым по популярности полимером (после полипропилена). В автомобилестроении ПВХ используется для производства покрытий, уплотняющих материалов, кабельной изоляции, отделки салона, приборных и дверных панелей, подлокотников и т.д.

Благодаря использованию ПВХ современные автомобили более живучи. Средний срок жизни современного автомобиля - 17 лет. Еще в 70-х годах прошлого века эта цифра не превышала 11 лет. Увеличение срока эксплуатации автомобиля означает реальную экономию природных ресурсов (если машины служат дольше, значит производить их можно меньше).

Использование в автомобилестроении полимеров вообще и ПВХ в частности ведет к снижению затрат топлива. Так как полимеры, не уступая традиционным материалам (металлу, стеклу) по прочностным свойствам, весят меньше – без ущерба для качества автомобиля снижается его вес, а, следовательно, и количество топлива, необходимое для работы двигателя.

ПВХ в строительстве

Из всех полимеров именно листы ПВХ имеет наиболее широкое применение в строительстве. В Европе в этой отрасли используется более 50% всего производимого ПВХ, в США - более 60%. И снова таки основными преимуществами ПВХ являются все те же способности производства разнообразных видов продукции с различными свойствами. Главными конкурентами ПВХ являются глина и дерево. ПВХ профиль

Главные качества ПВХ в строительстве:

  • износоустойчивость
  • механическая прочность
  • жесткость
  • небольшая масса
  • устойчивость к коррозии
  • химическому
  • погодному и температурному воздействию.

Одно из свойств ПВХ, которое способствовало его массовому применению в строитлеьстве - он отличный огнеупорный материал . Он с трудом поддается возгоранию. И прекращает гореть и тлеть сразу же после того, как исчезает источник высокой температуры. Основная причина - высокое содержание хлора. Это способствует повышению пожарной безопасности построенных объектов.

ПВХ не проводит электричество и, таким образом, идеален в качестве изоляционного материала. Основной чертой строительных материалов из ПВХ является их долговечность. 85% всех строительных материалов из ПВХ используются для долгосрочных сооружений.

Более 75% труб, произведенных из ПВХ, имеют срок службы более 40 лет (потенциал новых разработок в этой области увеличивает этот срок до 100 лет!). Аналогичные показатели у более чем 60% сделанных из ПВХ оконных профилей и кабельной изоляции.

ПВХ существенно дешевле конкурирующих материалов. Стройматериалы из ПВХ легче, чем стройматериалы из бетона, железа и стали. Это вновь приводит нас к мысли об экономической выгоде - на обработку продукции из ПВХ затрачивается меньше энергии, меньше транспортных услуг (а, следовательно, и топлива). Долговечность материала также позволяет экономить - трубы, окна и т.д. приходиться менять реже. Теплоизоляционные свойства ПВХ позволяют затрачивать меньше энергии на отопление помещений.

Основные физико-химические свойства

Поливинилхлорид или ПВХ - современный синтетический полимер, относящийся к числу так называемых базовых полимеров. Он был впервые синтезирован еще в 1870 году, а с 1930 выпускается в промышленном масштабе. С 1912 года начались поиски возможностей промышленного выпуска ПВХ, а в 1931 году концерном "BASF" были выпущены первые тонны этого материала.

Поливинилхлорид относится к группе термопластов. Чистый ПВХ - это порошок, который на 43% состоит из этилена (продукта нефтехимии) и на 57% из связанного хлора, получаемого из поваренной соли. Для производства листовых пластиков и оконного профиля в порошок добавляют стабилизаторы, пластификаторы, пигменты и вспомогательные добавки.

ПВХ пастики обладают достаточной механической прочностью и влагостойкостью, хорошими электроизоляционными свойствами, хорошей химической стойкостью: не растворяются в бензине и керосине, стойки к действию кислот и щелочей, имеют красивый внешний вид, легко подвергаются резке, формованию, сварке и склеиванию.
Поливинилхлорид (ПВХ) - универсальный термопластичный полимер, получаемый суспензионной полимеризацией винилхлорида.

ПВХ был одним из первых полимеров, получивших широкое коммерческое распространение, и на сегодня он является одним и самых популярных. Сегодня ПВХ занимает второе место после полиэтилена по потреблению среди синтетических полимеров.

ПВХ получают блочной (ПВХ-М), суспензионной (ПВХ-С) и эмульсионной (ПВХ-Е) полимеризацией. Его химическая формула: [-СН 2 -СНС1-]n.

Температура плавления ПВХ составляет 165-170 °С, однако при нагревании свыше 135 °С в нем начинаются процессы деструкции, сопровождающиеся отщеплением атомарного хлора с последующим образованием хлористого водорода, вызывающего интенсивную деструкцию макроцепей.

Разложение полимера сопровождается изменением его цвета от «слоновой кости» до вишнево-коричневого. Для предотвращения этого явления в ПВХ вводят комплекс стабилизаторов, из которых наиболее известны соединения свинца (оксиды, фосфиды, карбонаты), соли жирных кислот, меламин, производные мочевины.

В то же время большое содержание хлора делает ПВХ самозатухающим. ПВХ выпускается в виде порошков, гранул и пластизолей. В зависимости от степени пластификации ПВХ производится в виде винипласта и пластиката.

Винипласт — жесткий, практически не пластифицированный ПВХ, содержащий стабилизаторы и смазывающие добавки. При правильном подборе комплексов стабилизаторов температура деструкции поднимается до 180 - 220 °С, что допускает его переработку из расплава. Винипласт обладает высокими физическими свойствами (табл. 1.2), что делает его конструкционным материалом, широко применяемым в машиностроении и в строительстве (трубы, погонаж, фитинги, стеклопакеты и др.).

Таблица Физические свойства винипласта и пластиката

Винипласт имеет хорошую светостойкость, сваривается и склеивается. Нетоксичность ПВХ до 80 °С позволяет применять его в пищевой промышленности и медицине.

Пластикат представляет собой ПВХ, содержащий до 50 % пластификатора (фталаты, себацинаты, трикрезилфосфат и другие), что существенно облегчает его переработку в изделия и расширяет диапазон практического использования (пленки, шланги, искусственная кожа, линолеум, клеенки и др.).

Способы получения ПВХ

В качестве сырья для ПВХ используют хлор - 57% и нефть - 43%. Таким образом, ПВХ меньше, чем другие базовые полимеры зависит от нефтяного сырья. Это играет очень важную роль в его ценообразовании. В процессе полимеризации молекулы мономера винилхлорида объединяются в длинные цепочки ПВХ. Получающийся ПВХ-гранулят тоже является, по сути, сырьем - к нему добавляют различные вещества для придания материалу самых разнообразных свойств.

Вначале винилхлорид получали из ацетилена, который в свою очередь получали из карбида кальция, метана и других углеводородов термоокислмтельным пиролизом или электрокрекингом. Мощность установок колебалась от 10 до 100 тыс. тонн в год. С развитием нефтехимии винилхлорид стали синтезировать из более дешевого этилена хлорированием с получением дихлорэтана и последующим пиролизом последнего, либо оксихлорированием, т.е. реакцией с соляной кислотой и кислородом. Экономика процесса существенно улучшается, если удается задействовать соляную кислоту, образующуюся в качестве побочного продукта получения изоцианатов: ТДИ и МДИ/ПИЦ.

Этиленовый способ не только эффективнее, но и существенно чище, поэтому в развитых странах установок, работающих по ацетиленовой технологии, не осталось. Маломощные ацетиленовые рудименты во множестве (около 70) сохраняются в Китае, а также в России (новомосковский «Азот», волгоградский «Химпром», «Усольехимпром» и дзержинский «Капролактам»). На волгоградском ОАО «Пласткард» применяется технологическая схема, позволяющая синтезировать крекингом пропан-бутановой смеси этилен и ацетилен без их предварительного выделения. Процесс получения винилхлорида из этилена реализован в Саянске по лицензии фирмы BF Go-odrich (США) и Стерлитамаке по российской технологии.

Как известно, хлор получают электролизом (главным образом, ртутным, гораздо реже диафрагменным, около 20% - мембранным, который уже в обозримом будущем вытеснит остальные методы) водного раствора каменной соли, запасы которой в природе практически неисчерпаемы.

В новых производствах, как правило, используют реакторы - полимеризаторы с объемом более 100 м 3 , хотя на заводах фирм Shin-Etsu, Formosa, Oxyvinyls, да и в том же Саянске установлены автоклавы гораздо больших объемов. Оптимальная мощность производства определяется рядом факторов: размером и структурой рынка, степенью интеграции цепочки хлор - каустик - дихлорэтан - винилхлорид - ПВХ, региональными традициями.

Поливинилхлорид производится в мире по трем видам технологии полимеризации: суспензионная (более 80% всего ПВХ), эмульсионная и блочная. Технология полимеризации в блоке развивается только одной французской фирмой Peshine Sant Gobain, которая и продает процесс по всему миру. В последние десятилетия интерес инвесторов к этому процессу упал несмотря на низкую себестоимость продукта, поскольку полимер имеет относительно узкое применение и сложно освободить его от остаточного винилхлорида. Эмульсионный ПВХ производится во всех регионах мира (в Европе распространен больше, чем в США и Японии). Полимер используется в основном в производстве мягких изделий, перерабатываемых через пасты.

Суспензионный полимер представлен практически во всех развитых и развивающихся странах. В Соединенных Штатах Америки доля суспензионного полимера составляет около 90 процентов всего ПВХ, в Японии еще выше — около 95 процентов. Полимер имеет широчайшее использование, перерабатывается практически всеми известными методами (экструзия, каландрирование, литье, экструзия с раздувом и соэкструзия и др.).

Поскольку суспензионный метод полимеризации является превалирующим в мире и задает общий тон развития ПВХ, остановимся более подробно на современных тенденциях этого процесса. Процесс получения суспензионного ПВХ состоит в следующем: в реактор-полимеризатор загружают воду, винилхлорид, инициаторы, стабилизаторы эмульсии, антиоксиданты, регуляторы рН и другие необходимые компоненты, проводят полимеризацию с получением суспензии полимера в воде, суспензию дегазируют, фильтруют, полимер высушивают и упаковывают для отправки потребителю. Полимеризация проводится периодическим способом, остальные стадии - непрерывно. Все попытки осуществить суспензионнуто полимеризацию непрерывным способом, что позволило бы примерно в 2 раза интенсифицировать стадию полимеризации, пока не привели к практической реализации процесса в промышленном масштабе из-за сложностей с коркообразованием в реакторах и неоднородностью качества получаемого полимера.

С открытием канцерогенности винилхлорида резко возросли поисковые исследования и инженерные разработки, которые привели к коренным изменениям в технологии суспензионного ПВХ для снижения выбросов мономера в окружающую среду. В результате к 80-м годам сложилась достаточно четкая технологическая схема получения суспензионного ПВХ, включающая на всех установках однотипные стадии и их аппаратурное оформление:

Реактор-полимеризатор «закрытого» типа объемом 70-200 м 3 из плакированной стали, оборудованный обратным конденсатором и очистным устройством с водой среднего и (или) высокого давления;

Емкостной дегазатор (один, два или три, работающие последовательно) и отпарная колонна дегазации суспензии с тарелками ситчатого типа;

Центрифуга отстойного типа (предпочтительно с отношением длины ротора к его диаметру ~3);

Двухкамерная сушилка «кипящего» слоя;

Винтовой компрессор рекуперации незаполимеризовавшегося винилхлорида;

Система управления технологическим процессом от компьютера, которая в 90-е годы стала базироваться на локальной микропроцессорной технике.

В последнее двадцатилетие ведущие западные разработчики технологии ПВХ и компонентов для его производства провели широкие исследовательские и поисковые работы, направленные на интенсификацию полимеризационного процесса и снижение материальных и энергетических затрат, что позволило значительно удешевить создание новых установок. Все эти достижения были реализованы в значительной степени за счет применения новых компонентов рецептурного формата технологии, включающего следующие агенты:

Эмульгирующая система на основе первичного и вторичного поливиниловых спиртов и (часто) эфиров целлюлозы, позволяющая осуществлять полимеризационный процесс по так называемому «горячему» методу загрузки реактора;

Инициирующая система на основе пероксидикарбонатов и несимметричных пе-роксиэфиров, обеспечивающая равномерное тепловыделение в реакторе и возможность максимального использования поверхности теплосъема реактора;

Антикоркообразователь в реакторе, позволяющий проводить до 500 операций полимеризации без вскрытия реактора для чистки внутренней поверхности от наростов полимера;

Антивспениватель в реакторе, обеспечивающий предотвращение образования «сухой» пены в реакторе и тем самым коркообразование на верхней сфере реактора и в обратном конденсаторе;

Ингибитор полимеризации и стоппер аварийных ситуаций;

Пеногаситель на дегазации;

Ингибитор на стадии рекуперации мономера.

Области применения С-ПВХ

Марочный ассортимент ПВХ сложился к 90-м годам и с тех пор не претерпел существенных изменений. В ассортименте присутствуют и крупнотоннажные марки ПВХ, предлагаемые на рынке практически всеми производителями, и специальные малотоннажные марки, производимые лишь отдельными фирмами в основном в развитых западных странах. Из новых марок, которые появились в последние двадцать лет, можно отметить марки суспензионного и эмульсионного ударопрочного ПВХ - привитого сополимера на анриловый эластомер, используемые в производстве оконных и других строительных профилей. Наметилась тенденция по снижению молекулярной массы ПВХ при производстве экструзионных и каландровых материалов, что позволяет повысить производительность и снизить энергозатраты при переработке ПВХ. В соответствии с потребностями на рынке появились марки ПВХ, отличающиеся от прежних пониженным на 1-2 единицы значением константы Фикентчера (Кф), являющейся характеристикой молекулярной массы ПВХ.

В марке ПВХ цифрами показывается значение константы Фикентчера, группу насыпной плотности и, если это необходимо, остаток на сите № 0063. Буквы после цифры указывают на рекомендуемую область применения (М - в мягкие изделия, Ж - в жесткие, С - средневязкие пасты). Например, ПВХ-6358 Ж означает: С - суспензионный, значение константы Фикентчера-3, группа насыпной плотности 5, то есть 0,45-0,60 г/см3, остаток на сите 8 %, рекомендуется для производства жестких изделий.

Сегодня в мире более 70% смол ПВХ производится методом суспензионной полимеризации. Таким способом получают ПВХ в виде порошка со средним диаметром частиц 100-200 мкм. Контролируя кинетику реакции с помощью специально подобранных инициаторов (желательно иметь возможность делать это на протяжении всего цикла), получают полимер определенной средней молекулярной массы, характеризующейся константой Фикентчера (числом К).

Таблица. Области применения С-ПВХ

Экструзия

Конструкционный профиль

Оконный профиль, дверной профиль

Строительно-отделочный профиль

Подоконники, стеновые панели, сайдинг, настенные кабельные короба, напольный плинтус, системы оконных откосов, строительные уголки, раскладки, откосы, уплотнители, накладки на ступени и перила, мебельный оконтовочный профиль, фурнитура для профильных изделий и т.д.

Для изоляции экокропроводки, для канализации, для холодного водоснабжения, для дренажа

Строительство, изготовление сендвич-панелей, промышленное формование, наружная реклама, изготовление пластиковых карт, фотография и электроника.

Кабельные и обувные пластикаты

Электроизоляция кабелей, подошвы для обуви

Каландрирование и экструзия

Технические пластифицированные пленки, пленка для ламинации изображений, декоративные пленки для облицовки поверхностей, самоклеящиеся пленки, термоусадочные пленки, стретч пленки, пленки с твист-эффектом, пленки, используемые для упаковки текстильных, кожгалантерейных изделий и канцелярии (100-200 мкм), жесткие пленки, используемые для термо- и ваккумоформования (200-1000 мкм)

Литье под давлением

Фурнитура

Мебельная фурнитура, фурнитура для профильно-погонажных изделий

ПВХ (PVC) твёрдый (винипласт) ПВХ (PVC) мягкий (пластикат)
Удельная масса, г/ 1,35–1,43 1,18–1,30
Прочность при растяжении, МПа 40–70 10–25
Прочность при сжатии, МПа 60–160 6–10
Прочность при статическом изгибе, МПа 70–120 4–20
Предел прочности на разрыв, МН/ 60 16
Относительное удлинение при разрыве, % 40 400
Коэффициент эластичности, МН/ 3000 20
Твердость по Бринеллю, МПа 110–160 -
Модуль упругости при растяжении, МПа 2600–4000 7–8
Ударная вязкость (прочность), КДж/ 30 -
Удельная теплоёмкость, кДж/ (кг · К) 1, 05–2,14 1, 47
Электрическая прочность, МВ/м 15–35 25–40
Теплопроводность, Вт/ (м·К) 0,16–0,19 0,12
Горючесть, по UL94(США)>1.6 мм HB HB
Максимальная рабочая температура, 80 80
Тангенс угла диэлектрических потерь (при 50 Гц) 0,1 0,1
Удельное объёмное электрическое сопротивление, Ом*см 10 14 -10 15 10 9 -10 14
Коэффициент линейного расширения, - 70
Коэффициент трения 0.5 -

Винипласт

Винипласт - продукт переработки поливинилхлорида, содержащего следующие добавки:

  • термостабилизаторы (соединения олова, свинца, соли и оксиды щелочных металлов, а также иногда органические фосфиты, антиоксиданты фенольного типа, эпоксидированные масла);
  • светостабилизаторы (производные бензофенонов, кумаринов, Ti, сажа и др.);
  • смазки (воски, парафины, вводятся для улучшения текучести расплава);
  • минеральные наполнители;
  • пигменты или красители;
  • эластомер (для повышения ударной вязкости).

Полученная композиция перемешивается в смесителях и перерабатывается на вальцах или в экструдерах.

Винипласт выпускают в виде плит, листов, труб, профильно-погонажных изделий, а также в форме гранул, из которых литьем под давлением или экструзией формуют различные изделия. Винипласт хорошо поддается механической обработке, склеивается и сваривается. Его используют как коррозийностойкий конструкционный материал для изготовления воздуховодов, труб, фитингов, химической аппаратуры. Также из винипласта изготавливают плинтусы, подоконники, оконные и дверные профили и другие строительные детали. Прозрачный винипласт используется для производства бутылок, сосудов, флаконов, а также объёмной тары для пищевых продуктов.

Пластикат

Пластикат - продукт переработки поливинилхлорида. Кроме компонентов, применяемых при получении винипласта, пластикат содержит пластификатор (эфиры хлорированных парафинов, фосфорной или адипиновой кислот). Пластификатор снижает температуру стеклования ПВХ, что в свою очередь повышает относительное удлинение материала, снижает его хрупкость и облегчает переработку композиции.

Но одновременно с этим снижается химическая стойкость, диэлектрические и прочностные показатели. Пластикат перерабатывают в основном в виде пластизолей и паст; выпускают в форме гранул, плёнок, лент, листов.

Используют пластикат главным образом для производства изоляции и оболочек для кабелей и электропроводов, для изготовления плиток для полов, линолеума, шлангов, профильно-погонажных изделий, материалов для обивки мебели и облицовки стен, искусственной кожи. Гибкие прозрачные трубки из мягкого ПВХ используют для переливания крови и в системах жизнеобеспечения.

Поливинилхлорид с повышенной теплостойкостью используют для производства ПВХ-волокна.

ПВХ-волокно - синтетическое волокно, формируемое из растворов ПВХ или его производных. Характеризуется крайне низкой тепло- и электропроводностью, огнестойкостью, устойчивостью ко многим химическим реагентам. Из ПВХ-волокна изготавливают негорючие и фильтровальные драпировочные ткани, нетканые материалы, спецодежду, теплоизоляционные материалы.

Поливинилхлорид входит в число наиболее распространённых крупнотоннажных полимеров. По объёму производства в мире занимает третье место после полиэтилена и полипропилена. Используя композиции на основе ПВХ, получают гибкие, жёсткие, полужёсткие изделия и материалы, которые используются в медицине, строительстве, упаковке и т. д.

Применение поливинилхлорида

Области применения ПВХ Изделия и материалы
Упаковка Жёсткие плёнки для блистеров, коррексов, окошек, коробок, туб, усадочные плёнки, стретч-плёнки, твист-плёнки, бутылки и т. д.
Здания и строительство Трубы, наружная обшивка (сайдинг, вагонка) и комплектующие, уплотнение швов, дверные и оконные профили, напольные покрытия, ковровые покрытия, водосточные желоба и трубы, водопровод, гидроизолирующие покрытия для фундаментов, кровли, резервуаров и бассейнов и т. д.
Электроприборы и оборудование Корпуса, компоненты, оболочки проводов и кабелей, соединительные разъёмы, изолирующие ленты и т. д.
Транспортные средства Автомобильные компоненты, подкрылки, части бамперов, сидения, приборные панели, антикоррозионные покрытия, отделочные материалы, складывающиеся крыши и т. д.
Медицина, гигиенические изделия Капельницы, пакеты для переливания крови, трубки, блистерная упаковка для капсул и таблеток, детские подгузники и т. д.
Мебель, детали интерьера, предметы домашнего обихода Навесы, скатерти, шторы для душа, обивка, мебельные фасады, садовые шланги, ленты и сетки и т. д.
Прочее Пластиковые кредитные карты, канцелярские изделия, одежда, обувь, игрушки, сумки, гирлянды, искусственные цветы и ёлки и т. д.

Главным потребителем ПВХ является строительный сектор. Наряду с прочностью, износоустойчивостью, устойчивостью к коррозии, погодному, температурному и химическому воздействию, ПВХ обладает важным преимуществом перед другими полимерными материалами - прекрасной огнестойкостью. Из-за высокого содержания хлора он с трудом поддается возгоранию и прекращает тлеть и гореть при устранении внешнего источника огня. Материалы из ПВХ весьма долговечны, большинство оконных рам, труб и облицовочных панелей имеют срок службы до 40 лет.

Также ПВХ широко применяется в производстве потребительских изделий и игрушек. Кроме того, ПВХ остается самым популярным полимером для использования в медицине, благодаря инертности, химической стабильности, возможности стерилизации.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама